首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
新临钢连铸板坯中间裂纹的成因分析与改进措施   总被引:2,自引:0,他引:2  
根据新临钢Q235钢的连铸生产数据,并通过对连铸板坯中间裂纹的低倍研究、能谱分析等,对连铸板坯中间裂纹的形成原因和影响因素进行分析探讨,认为钢中S含量高,Mn/S值较小,是连铸板坯产生中间裂纹的主要原因。而辊缝开口度、浇注速度、钢水过热度也是中间裂纹产生和扩展的影响因素。并据此提出了减少铸坯中间裂纹的具体改进措施。  相似文献   

2.
周素强  成旭东 《连铸》2013,(5):13-16
对板坯动态二冷配水原理进行了详细的分析和研究,通过板坯凝固坐标体系和凝固传热模型微分方程的建立,确立了连铸板坯二维非稳态传热数学模型的基本方程组,根据实际浇注条件依据目标表面温度控制原理动态地设定各二冷区水量,对铸坯表面温度进行在线控制,实现对铸坯温度场的优化,动态二冷配水对提高板坯质量发挥了重要作用。  相似文献   

3.
板坯尾坯浇注为非稳态浇注过程,400 mm特厚板坯尾坯常伴随着表面横裂纹和中心缩孔质量缺陷。研究了不同的尾坯浇注拉速工艺和尾坯封顶工艺对特厚板坯尾坯质量的影响。结果表明:控制尾坯浇铸拉速v<0.5 m/min的时间t<5 min,使得矫直区尾坯表面温度在910 ℃以上,能够有效降低铸坯的表面横裂纹;尾坯采用无水封顶工艺,能够有效降低铸坯的中心缩孔。通过采取有效措施,特厚板坯尾坯废品量由改善前的月平均242 t降低到月平均30 t,降低了87.9%;尾坯中心缩孔长度由(3.0~3.5) m缩短到(1~2) m,效果明显。  相似文献   

4.
非稳态浇注时铸坯裂纹的控制措施   总被引:1,自引:0,他引:1  
蔡起良 《连铸》2009,(4):31-32
分析了非稳态浇注时导致铸坯裂纹产生的原因,通过采取相应的控制措施,降低了非稳态浇注时铸坯裂纹的发生率。  相似文献   

5.
基于对非稳态浇注时铸坯裂纹和夹渣产生原因的系统分析,提出了包括中间包清洁度检查,钢水全程保护浇注,使用还原性中间包覆盖剂及耐火材料,改进开浇氩气量的调节方法、以及采用快速升速制度、提高中包钢水过热度、优化浸入式水口插入深度等措施,从而降低非稳态浇注时铸坯裂纹和夹渣的发生概率。生产实践证明,上述改善工艺措施有效控制了非稳态浇注时铸坯裂纹和夹渣的发生。  相似文献   

6.
《铸造技术》2016,(11):2376-2383
基于钢凝固两相区溶质微观偏析模型和连铸结晶器内坯壳凝固生长二维瞬态热/力耦合有限元模型,提出了定量化描述结晶器内坯壳凝固生长的裂纹敏感性预测模型---CSC(Cracking Susceptibility Coefficient)模型。通过分析结晶器内包晶钢坯壳凝固宏观热/力学行为和坯壳裂纹敏感系数分布,探究了板坯结晶器内包晶钢坯壳凝固生长过程中裂纹敏感性的变化规律。结果表明,典型包晶钢板坯连铸工况下,坯壳偏离角区域易产生"热点",引发坯壳凝固前沿脆性温度区宽度扩大,结晶器窄面线性单锥度极易破坏坯壳应力分布的均匀性;包晶钢板坯表面裂纹和皮下裂纹主要产生于坯壳凝固初期,坯壳角部皮下裂纹则在结晶器内大部分区域均可能产生。  相似文献   

7.
张奇 《连铸》2017,36(3):1-5
为了能有效地控制板坯连铸坯的内部质量,阐述了一种热跟踪模型和动态辊缝实施模型。经过大量的过射钉试验和铸坯低倍试验表明,模型的理论计算值和实际测量值趋于一致,能明显提高铸坯内部质量。该系统工业化投产以来,系统运行稳定,显著地改善了产品内部质量。  相似文献   

8.
以控制电磁铸造结晶器内液位的动态稳定为目标,利用自行设计制造的反压式自动浇注系统,依据试验和计算,分别建立了稳态和非稳态过程下,中间包出流速度与拉坯速度相匹配的连铸起始段浇注控制模型.将该控制模型应用于计算机控制系统,在小型电磁铸造设备上可以精确、稳定的控制结晶器内液住.  相似文献   

9.
为全面掌握某钢厂帘线钢在非稳态浇注工况下的洁净度水平,为生产制定合理的头尾坯长度以及进行产品分级管理提供依据,对非稳态浇注和稳态浇注工况下的连铸坯分别取样,对比分析其洁净度差异,并通过水力学试验模拟分析了中间包充包过程中的渣-钢界面行为,进而解释了造成铸坯洁净度差异的原因。研究结果表明,非稳态浇注工况下帘线钢铸坯的洁净度明显低于稳态工况,其中T.O质量分数是稳态浇注工况的1.76倍,N质量分数是稳态浇注工况的1.23倍;两种工况下的显微夹杂物分别为52.89个/mm2和26.1个/mm2,大型夹杂物分别是11.49 mg/10 kg钢、4.36 mg/10 kg钢。充包时钢液裸露、二次氧化和卷渣是造成非稳态浇注时铸坯洁净度差的主要原因。  相似文献   

10.
李玉娣  江中块 《连铸》2022,41(2):89-94
为研究梅钢非稳态浇注对IF钢连铸坯洁净度的影响,采用氧氮分析、Aspex Explorer扫描电镜、大样电解等试验方法对BOF-RH-CC工艺生产的稳态及非稳态浇注的IF钢连铸坯进行了对比研究。结果表明,稳态浇注时铸坯具有较高的洁净度,正常坯w(T[O])和w(N)的平均质量分数分别为14.5×10-6和 9.5×10-6,显微夹杂物数量密度平均为5.1个/mm2,大型夹杂物总质量为3.34 mg/10 kg。各非稳态过程,头坯洁净度最差,其次是尾坯和换水口坯。不同类型铸坯显微夹杂物种类基本相同,而非稳态铸坯因保护渣卷入形成的大颗粒夹杂物数量均多于正常坯。  相似文献   

11.
针对在高拉速情况下薄板坯连铸过程中频繁出现"冷齿"、黏结以及铸坯表面纵裂纹较多等问题,依据中碳钢凝固收缩特性并结合现场实际生产情况,开发了一种适合在高拉速情况下薄板坯中碳钢连铸用保护渣。生产实践表明,在拉速提高后,使用新型保护渣基本避免了铸坯表面纵裂纹的产生,也无"冷齿"、黏结等报警现象出现,铸坯质量显著提高,完全满足生产要求。  相似文献   

12.
超高强热成型钢薄板坯连铸连轧(TSCR)工艺生产过程中,合理控制工艺参数,尽可能减少铸坯中粗大第二相的析出是保证产品质量和生产顺行的关键。明确粗大的微米级Ti(Cx,N1-x)析出相在TSCR工艺流程中析出演变规律对实际生产中质量控制和工艺参数优化具有重要的指导意义。本研究通过热力学计算和试验研究相结合的方式,对超高强热成型钢TSCR工艺连铸及均热这一连续过程中微米Ti(Cx,N1-x)析出相的析出演变行为进行了研究;明确了该过程中微米Ti(Cx,N1-x)相“析出-回溶-粗化”的演变规律,并对其析出长大速度、回溶速度以及粗化速度做了定量分析。结果表明,22MnB5钢中粗大的微米级Ti(Cx,N1-x)析出相在凝固末期液相中开始析出,开始析出的固相率为0.912。随着连铸温度不断降低,微米级Ti(Cx,N1-x)相中x值由0.1增大到0.7,Ti(Cx,N1-x)析出相逐渐由富氮相逐渐转变为富碳相。微米级Ti(Cx,N1-x)相在连铸冷却过程中不断长大,在升温过程中又部分回溶于基体中,随后在保温阶段再次长大。在TSCR工艺连铸和均热过程降温、升温、保温阶段,微米级Ti(Cx,N1-x)析出相颗粒生长、回溶、粗化的平均速度分别为0.007 2、-0.001 5、1.95×10-4 μm/s。  相似文献   

13.
直弧型连铸机生产精冲钢板坯表面缺陷率较高。结合实际生产工艺分析典型表面缺陷形成原因,并通过二冷配水优化、夹杂物控制、过热度控制以及连铸保护工艺优化,角部裂纹及皮下气泡缺陷率分别降至0.26%、1.11%,有效提高了连铸成材率。  相似文献   

14.
针对非稳态连铸冷却强度异常易导致铸坯质量缺陷的问题,从系统冷却角度提出一种改进的遗传算法对连铸拉速、冷却水等工艺进行协同优化。基于国内某钢厂3个月的工业连铸数据分析发现,开浇、终浇、换中间包、换水口等非稳态连铸由于拉速与冷却水协同不好导致冷却强度不足,影响铸坯质量与连铸效率。建立过程冷却强度优化模型,从优化目标、选择算子等方面对遗传算法进行改进,在生成可行解的同时提高模型收敛速度与优化能力。结果表明,模型优化方案符合现场工艺规则,通过适当提高二冷水量,非稳态连铸系统热量释放平均由45.87%提升至49.05%,处于合理区间内。该优化方法可为连铸系统生产管控提供指导。  相似文献   

15.
Variations in the hot ductility behavior of as-cast and remelted steel slabs were investigated. The specimens were prepared directly from the surface of an as-cast continuous casting slab. The slab was then remelted to assess the effect of the same on the cast structure. A high temperature tensile test was used to obtain hot ductility data. In the case of 0.18 wt.% carbon steel, hot ductility improved with increasing strain rate for both as-cast and remelted slab specimens. Comparing the results obtained from the as-cast and remelted specimens, similar hot ductility values were observed in the low temperature range. At higher temperatures, however, the remelted slab specimen had a higher R/A (reduction of area) value. The decreased R/A value of the as-cast specimens in the high temperature region could be explained by the increase in the initial grain size due to the slow cooling of the large slab during continuous casting. This means a lower hot ductility value than that obtained from remelted specimen should be assumed in the case of the application of lab data to an actual continuous casting process.  相似文献   

16.
基于Matlab数值计算,对板坯连铸凝固传热问题进行研究,得到随板坯厚度及其与结晶器弯月面距离变化的板坯温度场分布,通过拟合得到板坯凝固点末端位置与二冷总供水流量、过热温度和拉坯速度的关系式,分析二冷区水量分配比对结晶器和二冷区内单位长度板坯热损失率和板坯表面温度梯度的影响。结果表明:板坯温度随冷却阶段的不同其温度变化趋势显著不同;随着过热温度和拉坯速度的增大、二冷总供水流量的减小,板坯凝固点末端位置增大;拉坯速度对板坯凝固点末端位置的影响最为显著,其次是二冷总供水流量,过热温度对其影响较小。通过适当调整二冷区内水量分配比可实现降低板坯表面温度梯度和较少热损失率的折衷,从而在提高板坯质量的同时也提高其蓄能,以实现板坯连铸过程的节能。所得结果能对板坯连铸凝固过程的参数设计和动态运行提供依据和理论指导。  相似文献   

17.
连铸板坯的热装热送作为钢-轧界面重要技术,在绿色减碳、提高成材率和缩短生产周期方面起关键作用。微合金钢连铸板坯热装温度及比例持续提高的限制性环节是钢板表面的红送裂纹缺陷,针对此问题首钢自主设计开发了基于铸机扇形段的板坯热装预处理的工艺、设备及控制系统整套技术,实现了高温铸坯表面组织细化及强韧化,消除了高温热装轧材表面的“红送裂纹”缺陷问题,解决了快冷条件下高温铸坯弯曲变形、冷却均匀性等难题,最大限度保留了高温铸坯内部温度,提高整体热装温度。相比同类技术具有更好的经济性及可复制性。  相似文献   

18.
针对高耐候钢连铸板坯生产实践中遇到的表面纵裂纹问题,对钢的成分、结晶器保护渣、结晶器冷却及二冷区冷却等影响因素进行了讨论分析,提出了连铸工艺改进优化方向。生产实践表明,采取控制镍铜比大于0.3,选用高碱度、高熔点、低黏度耐候钢专用保护渣,调整结晶器倒锥度每米1.0%~1.1%,结晶器及二冷区弱冷却;控制非稳态浇铸,维持钢水过热度在20~30 ℃,稳定液面波动在2%以内、拉速波动在±0.2 m/min等技术措施,板坯表面纵裂发生率从50%以上降低到3%左右。  相似文献   

19.
杨晓江 《连铸》2016,35(5):21-25
唐钢薄板坯连铸连轧线在2012年围绕提高连铸拉速对薄板坯连铸机进行工艺技术优化,优化后连铸工作拉速由原来的4 m/min以下提高到4.5~5.5 m/min,最高拉速可以达到6.0 m/min。为解决连铸拉速提高后铸坯质量缺陷增加的问题,对高拉速保护渣、浸入式水口、结晶器冷却方式和结晶器窄板进行技术优化研究。通过优化,连铸坯的裂纹缺陷率降至0.1%以下,表面夹渣缺陷率不高于0.03%,结晶器铜板寿命显著延长,漏钢率不高于0.1%,实现了高拉速下薄板坯连铸的稳定生产。  相似文献   

20.
通过工业化试验数据,系统地研究了二冷辊式电磁搅拌对高强钢内部质量及轧材性能的影响。结果表明:二冷辊式电磁搅拌能有效地改善连铸坯的低倍组织,低倍评级从1.5~3.0级提高至1.0~1.5级,中间裂纹都提高至0.5级以下,中心偏析从连续、半连续的A、B类偏析改善成点状的C类偏析;在目前工况下,当电流为400 A、频率为7 Hz时,铸坯的低倍质量最佳。使用辊式电磁搅拌后,元素C、P的成分偏析增加,尤其在铸坯1/4厚度处,C、P呈明显的负偏析,即白亮带区域。电磁搅拌对轧材的基本性能无明显影响,且能明显减轻轧材的中心偏析或中心区带状组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号