首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学成分分析、金相检验和断口分析等方法,对304L钢D210塔筒体泄漏原因进行了分析。结果表明:D210塔筒体泄漏原因是由于氯离子的存在而产生应力腐蚀开裂所致。由于敏感材料、应力腐蚀环境及应力三个条件共同存在,在一定温度下使其产生应力腐蚀裂纹,裂纹起始于筒体外壁角焊缝处,而后向内壁扩展,最终穿透筒壁,致使该塔筒体在角焊缝处产生破裂泄漏。  相似文献   

2.
管线钢近中性p H值环境应力腐蚀开裂(SCC)是管线失效的一种重要形式,但其发生机理仍不清楚,现场实际发现其易发生在焊缝附近。采用动电位极化和电化学阻抗技术研究了外加拉应力对X80钢焊接接头在近中性p H值溶液中电化学行为的影响。结果表明:应力使X80钢母材和焊缝的腐蚀电位负移,腐蚀电流密度增大,应力促进了母材和焊缝的阳极溶解和阴极反应;在弹性变形区间,外加应力没有破坏腐蚀产物膜的完整性,腐蚀产物膜电阻几乎不变,应力使腐蚀产物膜孔隙结构变大,促进侵蚀性离子向电极表面扩散,母材和焊缝的电荷转移电阻明显减小;由于组织结构的原因,焊缝的应力影响系数比母材的大,X80钢焊缝比母材有更强的应力敏感性。  相似文献   

3.
国内外发生了多起核反应堆控制棒驱动机构Ω焊缝母材区域的泄漏事故,其主要原因为母材的应力腐蚀开裂(SCC)。通过恒变形应力腐蚀实验、慢应变拉伸实验和应力腐蚀裂纹扩展实验对Ω焊缝母材在正常运行环境及Ω焊缝内部超标水环境条件下的应力腐蚀行为进行了实验研究。实验结果表明,Ω焊缝内部水环境中富集的溶解氧和氯离子会使母材的耐应力腐蚀性能下降,使材料对SCC更加敏感,并促进SCC裂纹的扩展。同时,本研究提出了改善Ω焊缝水环境的建议。  相似文献   

4.
材质为ASTM A240 316L不锈钢烘筒的筒体出现了,导致变形失效。通过现场观察、材质分析、金相检验等检测方法对简体内壁裂纹的宏观形貌、显微组织、腐蚀产物并结合烘筒的工况等进行分析。结果表明,不锈钢烘筒的简体在富含氯离子的环境中,在氯离子和拉应力的共同作用下,发生应力腐蚀开裂。烘筒失效的直接原因是因为裂纹失去强度,在布的外力作用下变形失效。  相似文献   

5.
某电厂汽轮机二级抽汽疏水管在运行过程中于焊缝处发生开裂。采用宏观分析、化学成分分析、金相检验、扫描电镜分析等方法对疏水管焊缝开裂原因进行了分析。结果表明:由于该疏水管直管和弯管对接焊后未进行去应力焊后热处理,焊缝处残余应力较高;在焊接残余应力、工作应力及氯离子的共同作用下,疏水管焊缝内壁萌生裂纹,裂纹由管内壁向外壁不断扩展,最终导致疏水管发生应力腐蚀开裂。  相似文献   

6.
采用残余应力检测、常规力学性能试验以及金相分析等方法对304不锈钢低温分离器的封头开裂原因进行分析。结果表明,开裂是由应力腐蚀引起的;其原因是工作介质中有含量较高的硫,而封头一筒体对接环焊缝区域存在的残余应力促使开裂的发生。  相似文献   

7.
某660 MW高压加热器的筒体接管角焊缝在焊接过程中发生开裂并扩展至筒体母材。对其进行了宏观检验、硬度测试、金相检验、扫描电镜及能谱分析,以分析开裂原因。结果表明:接管与筒体角焊缝根部成形不良,存在夹渣、气孔等焊接缺陷;在焊接应力、结构拘束应力的作用下,焊接缺陷处产生应力集中,裂纹从此处萌生并扩展开裂。采用了与筒体返修开口尺寸匹配的整体锻件返修方案,强度计算满足设计要求,并一次返修合格。  相似文献   

8.
宝钢1550电镀锌机组导电辊表面筒体使用的是哈氏合金材料。在长期使用过程中哈氏合金的焊缝腐蚀和开裂,是导电辊最大的问题。因此,本文主要对采用填丝TIG焊的导电辊哈氏合金筒体的失效进行了分析,揭示了其产生应力腐蚀开裂并最终导致失效的原因,为采取相应的改进措施,提高导电辊焊缝的抗蚀性提供理论依据。  相似文献   

9.
工程停修后制氢转化炉炉管下法兰开工试车时发生开裂泄漏.就此,对下法兰进行了裂纹宏观分析、化学成分分析、金相分析、断口形貌观察及腐蚀产物分析.结果表明,下法兰焊缝、热影响区及母材均发生了一定程度的敏化.下法兰的开裂属于敏化状态下的连多硫酸应力腐蚀开裂,这种开裂,除工作条件、环境因素外,还与材料不符合标准有关,建议选用双相不锈钢或耐热不锈钢加以避免.  相似文献   

10.
采用化学成分分析、拉伸试验和断口分析等方法对304不锈钢裂解气压缩机出口法兰密封垫片的开裂原因进行了分析。结果表明:裂纹起源于螺栓槽处,氯离子的应力腐蚀开裂是造成垫片开裂的主要原因。含氯离子的沿海潮湿大气是导致垫片产生应力腐蚀的介质因素,装配不当造成螺栓槽处垫片过大的应力和应变是导致垫片出现应力腐蚀开裂的力学因素。  相似文献   

11.
采用慢应变速率拉伸(SSRT)实验研究了X80管线钢及其焊缝在近中性的NS4溶液中的应力腐蚀行为与敏感性。结果表明:X80管线钢及其焊缝主要是塑性损失,且焊缝塑性损失大于母材;X80管线钢及其焊缝在空气中属于典型的韧性断裂特征,在NS4溶液中属于穿晶应力腐蚀开裂(TGSCC),在NS4溶液中母材和焊缝断口中间区域比断口边缘区域表现出更明显的脆性断裂特征。电位在大于-749.86mV时,SCC机制为阳极溶解机制,在-749.86~-839.19mV之间时为阳极溶解和氢脆混合机制,小于-839.19mV时为氢脆机制。  相似文献   

12.
通过现场勘察、化学成分分析、金相检验、能谱分析等手段对不锈钢制高温高压染色机壳体破裂的原因进行了分析。结果表明:壳体破裂的原因是304不锈钢制染色机壳体在含有高浓度氯离子的染液环境中,并在操作应力及焊接残余应力的联合作用下,发生了应力腐蚀开裂。  相似文献   

13.
某医院矩形脉动真空灭菌器内腔发生开裂事故,通过宏观分析、金相检验和光谱分析等方法,结合工作介质,对内腔开裂的原因进行了分析。结果表明:灭菌器内腔与加强筋不连续焊接处存在焊接残余应力,且靠近内腔弯折处存在局部应力集中现象;灭菌器内腔的工作介质中含有氯离子,而氯离子水溶液是300系列不锈钢发生应力腐蚀开裂的敏感介质。灭菌器内腔在焊接残余应力、含氯离子介质等因素的综合作用下发生起始于靠近内腔弯折的焊接起始处的应力腐蚀开裂。  相似文献   

14.
通过外观检查、化学成分分析、力学性能测试、渗透探伤及金相检验,对表面质量好与表面质量差的母材(合格母材与不合格母材)进行对比;并将选用两种母材的焊接结构件在有腐蚀介质的环境下经过2a(年)的运行试验后进行对比,结果表明:母材存在表面质量缺陷时,母材及焊接接头在有腐蚀介质的环境下,出现腐蚀现象,产生腐蚀坑;焊缝熔合线处的腐蚀坑在拉应力作用下产生裂纹,形成非过载的损伤型断口;母材不存在表面质量缺陷时,未发生腐蚀现象,未发现焊缝裂纹。  相似文献   

15.
采用宏观分析、金相检验、断口宏观及微观分析以及能谱分析等方法,对某炼油厂裂化车间4台热交换器不锈钢管束先后发生大面积断裂的性质及原因进行了分析。结果表明:该热交换器管束断裂是由在交变载荷和腐蚀介质作用下发生的由外向内的腐蚀疲劳开裂引起的;腐蚀疲劳裂纹起始于管外壁的点蚀坑等应力集中处,促进腐蚀疲劳裂纹扩展的管束外部介质主要是Cl-和H2S;裂纹先以腐蚀疲劳开裂方式扩展,而后又呈典型的应力腐蚀开裂方式继续扩展,当应力腐蚀裂纹扩展达到管束断裂强度时便发生断裂。最后提出了预防管束断裂的措施及建议。  相似文献   

16.
本文简述聚合装置常见的金属腐蚀,并对腐蚀类型提出防护措施。近年来,在化工装置中铬镍不锈钢(奥氏体)的用量越来越多,据统计,其用量约占不锈钢用量的80%但奥氏体不锈钢在含有对应力腐蚀敏感离子(如Cl-、OH-一等)的溶液中,受应力的部分(如焊缝附近)则可能产生危险的应力腐蚀破裂。尤其是含Cl-的溶液,在造成奥氏体不锈钢应力腐蚀破裂的事故中约占70%以上。Cl-浓度越大,越容易开裂,但并没有明确的不发生开裂的限界浓度。  相似文献   

17.
采用宏观及微观断口分析、金相检验与化学成分检测等方法,对某铬一镍奥氏体不锈钢波纹管补偿器的腐蚀开裂失效原因进行了分析。结果表明:由于该铬一镍奥氏体不锈钢波纹管在氯离子含量超标的环境中服役,并承受来自于波纹管自身加工变形过程中形成的残余应力、工作应力以及装配应力,最终导致波纹管补偿器发生了由表及里的应力腐蚀开裂。  相似文献   

18.
某石化公司乙烯厂乙烯装置的核心设备第二急冷换热器于2018年5月突然发生泄漏,导致设备停车.检修发现本次泄漏主要发生在换热器壳体靠近上管板的第一节筒节,壳体失效位置存在贯穿性裂纹,裂纹已沿厚度方向完全开裂.为此,查阅了该设备的原始制造资料,进行了换热器筒体开裂现象的应力分析、宏观检查和取样分析.最终确定碱应力腐蚀是引起换热器筒体失效开裂的根本原因,并提出了相应的防止措施.  相似文献   

19.
某临近海边小区的316不锈钢护栏安装完约两个月后即出现腐蚀失效。采用化学成分分析、金相检验、扫描电镜及能谱分析等方法对护栏腐蚀失效原因进行了分析。结果表明:护栏焊缝区与母材化学成分存在明显差异,使得两者之间存在较大的电极电位差,焊缝处存在一定的焊接残余应力。且安装位置临近海边,空气湿度大,该护栏在焊缝熔敷金属区域发生电化学腐蚀和应力腐蚀,在该两种腐蚀的综合作用下最终造成护栏腐蚀失效。  相似文献   

20.
采用化学成分分析,宏、微观组织检验,断口观察和腐蚀产物分析等方法对SUS304奥氏体不锈钢锅炉的锅筒开裂进行了分析。结果表明,环境中存在硫和氯等元素,造成在锅筒板与顶盖的焊接处发生腐蚀而形成腐蚀坑并萌生裂纹,在各种应力作用下裂纹不断扩展,最终导致开裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号