首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用阻燃剂三氯乙基磷酸酯(TCEP)制备了阻燃聚氨酯封孔材料,研究了阻燃剂TCEP添加量对聚氨酯封孔材料阻燃性能、膨胀倍数和压缩强度的影响,分析了阻燃聚氨酯材料的微观形貌和红外光谱图谱。结果表明,TCEP添加量为20 %时,聚氨酯的极限氧指数由20.0 %提高到23.4 %,膨胀倍数随着TCEP的加入先降低后升高;阻燃剂不会改变聚氨酯的主体结构,但是影响泡沫性能和形貌。  相似文献   

2.
研究了无卤、含磷添加型阻燃剂红磷、包覆红磷、聚磷酸铵、包覆聚磷酸铵、含磷膨胀型阻燃剂PNP、三聚氰胺焦磷酸盐等6种阻燃剂对硬质聚氨酯泡沫塑料阻燃及力学性能的影响。结果表明,随着阻燃剂添加量的增加,阻燃硬质聚氨酯泡沫塑料的极限氧指数(LOI)总体上呈升高趋势,拉伸强度呈先上升后下降趋势,而冲击强度呈逐渐下降趋势。包覆红磷和包覆聚磷酸铵阻燃材料的阻燃性能和力学性能均明显好于普通红磷和聚磷酸铵阻燃剂,PNP阻燃材料具有最佳的阻燃性能和力学性能,当PNP添加量为25%时,阻燃材料的LOI为29.5%,拉伸强度和冲击强度分别为5.3 MPa和8.7 kJ/m2。  相似文献   

3.
对利用木质素磺酸钠溶剂液化产物与聚醚多元醇复配制备改性硬质聚氨酯泡沫材料的阻燃性能进行了研究。采用甲基膦酸二甲酯(DMMP)为阻燃剂,对添加量为10%~16%范围内的改性聚氨酯泡沫材料的结构与性能进行了研究。研究结果表明,DMMP与发泡体系中的其他组分相容性好,DMMP的添加使发泡速度有所下降,但对材料的微观形貌影响不大。与未添加DMMP的泡沫材料相比,添加DMMP的泡沫材料极限氧指数提高,阻燃性增强,当DMMP添加量为16%时,材料的极限氧指数最大,为25.3;材料的压缩强度与表观密度随DMMP添加量的变化而变化,当DMMP添加量为11%时,压缩强度和表观密度都达到最大值,分别为70.55kg/m~3和0.47MPa。综合比较木质素磺酸钠改性硬质聚氨酯泡沫的力学性能和阻燃性能,当DMMP添加量为13%时,综合性能表现较优,压缩强度为0.30MPa,极限氧指数为24.99。  相似文献   

4.
新型磷-氮系复配阻燃剂在聚丙烯中的应用   总被引:1,自引:0,他引:1  
采用一种新型磷-氮系阻燃剂与聚磷酸铵(APP)复配成膨胀型阻燃剂,对聚丙烯(PP)进行阻燃改性。研究了阻燃PP的阻燃性能、热分解过程及力学性能。结果表明:当复配阻燃剂添加量为30%时,阻燃改性PP的氧指数和垂直燃烧等级分别达到32.3%和UL94 V-0级,拉伸强度为37.4 MPa,缺口冲击强度为39.5 kJ/m2,并且具有很好的热稳定性。  相似文献   

5.
微胶囊聚磷酸铵的制备及阻燃环氧树脂的性能研究   总被引:1,自引:0,他引:1  
采用三聚氰胺甲醛树脂预聚物通过原位聚合法制备了微胶囊聚磷酸铵阻燃剂(MAPP),利用扫描电镜观察到MAPP颗粒表面包覆了一层树脂。采用热重分析法、垂直燃烧法和氧指数法研究了聚磷酸铵(APP)和MAPP阻燃环氧树脂材料的热性能及阻燃性能。结果表明:与APP相比,MAPP阻燃环氧树脂的最大失质量温度、残炭量以及阻燃性能均显著提高。添加10%APP或MAPP的环氧树脂材料的氧指数均大于27.0%,阻燃性能均达到UL 94 V-0级,且MAPP样条燃烧后可形成膨胀炭层。相比于APP,MAPP阻燃材料的力学强度均有所改善,当阻燃剂填充10%时材料的拉伸强度从32.6 MPa提高到35.7 MPa,冲击强度从10.8 kJ/m2提高到11.6 kJ/m2,均高于纯环氧树脂材料的力学强度。  相似文献   

6.
《塑料科技》2016,(9):85-88
将自行研究生产的三嗪膨胀阻燃剂(IFR)添加到聚氨酯中制备阻燃硬质发泡聚氨酯(RPUF)材料,通过极限氧指数(LOI)研究了材料的阻燃性能,通过热重分析(TGA)测试研究了材料的热稳定性和成炭性能,通过扫描电镜(SEM)的测试了材料的泡孔结构及燃烧后炭层的表面形貌,同时还研究了阻燃剂添加量对材料的阻燃性能及压缩强度的影响。结果表明:纯RPUF材料的氧指数仅为18.7%,在空气中极易燃烧。当阻燃剂的添加量为25%时,材料的氧指数值提高到了26.1%,同时IFR的加入使得RPUF材料的压缩强度显著提升。TGA结果表明:阻燃剂的添加使得材料的起始热分解温度有所降低,但材料的残炭量得到了很大程度的提高。SEM结果表明:阻燃剂的加入对RPUF材料的泡孔结构影响不大,同时使材料燃烧后的炭层更加的致密和均匀,从而提高了材料的阻燃性能。  相似文献   

7.
以氯磷酸二苯酯和3-氨丙基三甲基氧基硅烷等作改性剂,使用固相接枝反应技术合成了膨胀型阻燃剂功能化水滑石(IFR-LDH)。结果表明,膨胀型阻燃剂已接枝到水滑石表面。加入IFR-LDH可提高EPDM发泡材料的阻燃性能,而力学性能未见明显下降。加入20%IFR-LDH的EPDM发泡材料阻燃级别达到UL94V-0,极限氧指数(LOI)达到31.8%。膨胀型阻燃剂和LDH的协同作用强化了炭层,提高了EPDM发泡材料的阻燃性能。  相似文献   

8.
含磷硅高分子阻燃剂与聚磷酸铵对EVA的协效阻燃作用   总被引:3,自引:0,他引:3  
研究了聚酯型磷-硅无卤阻燃剂(EMPZR)与聚磷酸铵(APP)对乙烯-醋酸乙烯酯共聚物(EVA)阻燃及力学性能的影响。结果表明,添加为40 %(质量分数,下同)的由EMPZR和APP所组成的复合阻燃剂得到的阻燃EVA材料,其极限氧指数达到28.6 %,垂直燃烧测试达到V-0级,拉伸强度为6.4 MPa,断裂伸长率达592 %。热失重分析测试表明,阻燃EVA材料的热失重速率较纯EVA有明显下降;成炭率显著提高,阻燃EVA在800 ℃时残炭量为15 % ,纯EVA仅为0.2 %。通过扫描电子显微镜对残炭形貌进行表征,以及对氧指数测试前后的阻燃EVA材料的红外图谱分析,表明EMPZR与APP在EVA中具有协效阻燃作用。  相似文献   

9.
采用树脂包覆法,用蜜胺树脂和聚磷酸铵/季戊四醇/三聚氰胺组成的膨胀型阻燃剂制备无卤阻燃发泡聚苯乙烯(EPS)泡沫,研究膨胀阻燃剂对EPS泡沫的阻燃性能、抑烟性能及力学性能的影响。结果表明,膨胀阻燃剂可以有效提高EPS泡沫的阻燃性能和抑烟性能,极限氧指数最高可提高到30.6%,UL-94达到V-0等级,生烟量下降35%,EPS泡沫的冲击强度也得到提高。  相似文献   

10.
姜洪丽 《中国塑料》2018,32(7):122-125
以三嗪成炭发泡剂(CFA)及聚磷酸铵(APP)复配成膨胀阻燃剂(IFR),以硅酸镁(MgSiO3)为协效剂添加到热塑性聚氨酯弹性体(TPU)中制备阻燃TPU材料,研究了阻燃TPU材料的阻燃性能、力学性能、热降解行为和炭层的表面形貌。结果表明,纯TPU材料的极限氧指数仅为22.0 %,在空气中极易燃烧,当IFR添加量为28 %(质量分数,下同),MgSiO3添加量5 %时,材料的极限氧指数提高到37.1 %,通过UL 94 V-0级,表现出很好的阻燃效果;但是IFR/MgSiO3的加入使材料的拉伸强度和断裂伸长率明显下降,也使得TPU材料的起始热分解温度提前,最大热降解速率峰值降低,同时材料的残炭量得到了很大程度的提高。  相似文献   

11.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

12.
In this article, a flame retardant microcapsule ammonium polyphosphate microencapsulated by polyurea (POAPP) was successfully synthesized by interfacial polymerization method using ammonium polyphosphate (APP) as core and polyurea as shell. The microencapsulation is observed by scanning electron microscopy and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and hydroscopicity test, which prove the success in synthesizing microencapsulation. When the POAPP is added into rigid polyurethane foam (RPUF), the flame retardant and mechanical properties are investigated using cone calorimeter, limited oxygen index test, and compressive strength test. The PHRR of RPUF-POAPP20 decreased from 336.52 kW/m2 (Ref. RPUF) to 203.84 kW/m2 and the THR of RPUF-POAPP20 was only 7.6 MJ/m2, which is 33.9% lower than that of Ref. RPUF. Furthermore, the limiting oxygen index of RPUF-POAPP20 reaches 24.8%, which increased by 36.3% compared to Ref. RPUF. Whereas the maximum compressive strength of RPUF-POAPP5 was 7.46 MPa, which is higher than that of RPUF-APP5.  相似文献   

13.
以多元醇、二异氰酸酯、聚磷酸铵(APP)、三聚氰胺(MA)等为原料,采用一步法,制得阻燃聚氨酯泡沫塑料。研究了不同阻燃剂的用量对聚氨酯泡沫的力学性能、热性能和阻燃性能的影响。结果表明,材料拉伸强度随阻燃剂添加量的增加而增加;材料的极限氧指数和在500℃时的分解残留量均随复合阻燃剂添加量的增加先增大后减小;APP/MA复合阻燃剂的效果好于单组分APP。  相似文献   

14.
应用混料设计实验方法研究了邻苯二胺基环三磷腈(HACTP)和聚磷酸铵(APP)、蒙脱土(MMT)复配阻燃剂对乙烯-醋酸乙烯酯共聚物(EVA)材料阻燃和力学性能的影响,并利用锥形量热仪及电子扫描显微镜研究了不同配方下阻燃EVA的热释放性能和燃烧后膨胀炭层的微观形貌,探讨阻燃机理.结果 表明:在HACTP质量分数为32.8...  相似文献   

15.
用氯化锶和锡酸钠为原料制备的锡酸锶,将其为阻燃剂与聚磷酸铵(APP)协效添加到PP聚合物中。通过极限氧指数、垂直燃烧对阻燃前后样品进行研究。当锡酸锶的添加量为15份时,APP为20份,PP为100份时试样的极限氧指数达到最大34.2%,燃烧等级为V-1级。并通过热分析研究阻燃前后PP的热降解行为。  相似文献   

16.
林立  许苗军  李斌  李洋 《中国塑料》2013,27(4):42-46
利用十八烷基胺对聚磷酸铵(APP)进行表面修饰改性,通过静态接触角对改性后的APP进行润湿性能的测试,其接触角达到了136°,说明改性后的APP具有良好的疏水性能。将改性的APP与成炭发泡剂(CFA)以4:1的比例进行复配后加入到聚乙烯(PE)中,制备阻燃PE材料,并通过氧指数(LOI)和垂直燃烧研究了材料的阻燃性能,通过拉伸和弯曲测试研究了材料的力学性能,通过水煮的方法研究了阻燃材料的耐水性。测试结果表明,与未改性的APP相比,APP的表面改性使得阻燃PE材料的阻燃性能略有降低,但提高了阻燃剂与聚合物的相容性,阻燃PE的力学得到了提高,同时阻燃材料的耐水性能得到了大幅度的提高,其阻燃剂的水抽出率大大降低,当阻燃剂的添加量为25%时,阻燃材料的抽出率仅为0.12%。  相似文献   

17.
以正戊烷为发泡剂,三聚氰胺(MEL)和聚磷酸铵(APP)为阻燃剂,以平均燃烧时间和冲击强度为性能指标,利用扫描电子显微镜(SEM)、红外光谱(IR)、水平垂直燃烧测定仪及热重分析仪(TGA)等手段,通过多指标正交试验设计及直观分析,研究了环保聚酯型阻燃聚氨酯泡沫塑料(PUF)的配方。结果表明:聚酯多元醇100份,有机锡0.18份,异氰酸酯指数为1.05,阻燃剂中的磷占总物料质量的2.5%,温度为24℃,发泡剂为18份;采用多指标法制备的阻燃PUF兼有良好的阻燃性和抗冲击性,达到B1级难燃材料的标准,冲击强度达4.03kJ/m2。  相似文献   

18.
聚丙烯具有易燃性,限制其进一步应用。以磷酸二氢铵、五氧化二磷、尿素为原料合成聚磷酸铵,然后将其应用于聚丙烯中考察其阻燃性。在氨气压力为0.5 MPa、温度295℃下反应1.5 h,停止加热,降温至150℃,得到聚磷酸铵。红外光谱和X-衍射线表明合成聚磷酸铵是I型和II型混合型。当聚丙烯复合材料中膨胀型阻燃剂质量分数为30%,极限氧指数达30.8%,通过UL-94测试。结果表明,应用聚磷酸铵为原料的阻燃剂具有较好的阻燃性能。  相似文献   

19.
采用反相悬浮法聚合丙烯酸钠,同时将化学膨胀阻燃体系(IFR)三组分聚磷酸铵、季戊四醇和三聚氰胺加入到聚合体系中进行原位包裹,用傅里叶变换红外光谱对聚合产物的结构进行了表征,研究了三聚氰胺用量和聚磷酸铵与季戊四醇配比对丁苯橡胶硫化胶阻燃效果的影响,采用热重法分析了阻燃丁苯橡胶的热性能,并通过扫描电镜观察了添加IFR的丁苯橡胶在燃烧后表面的微观形态。结果表明,三聚氰胺的质量分数为IFR体系的3.0%、聚磷酸铵与季戊四醇的质量比为4.00~5.67时IFR体系的剩炭率最高,阻燃性能较好;添加IFR后丁苯橡胶的阻燃性能得到相应改善,当IFR质量分数为30%时丁苯橡胶硫化胶的极限氧指数可达27.5%;添加了IFR的丁苯橡胶硫化胶在燃烧时形成了较为致密的泡沫炭层,表明IFR对丁苯橡胶具有较好的膨胀阻燃效果。  相似文献   

20.
The flame retardant polypropylene containing the micro-envelope core-shell structure flame retardant, which encapsulated ammonium polyphosphate into melamine-formaldehyde resin and sodium silicate through in situ polymerization was prepared with polyamide 6, added as a carbon-forming agent. The composition of ammonium polyphosphate, encapsulated ammonium polyphosphate with melamine-formaldehyde resin and the micro-envelope core-shell structure flame retardant were characterized. The fire safety and thermal stability were investigated and showed an improvement including limiting oxygen index, thermogravimetric analysis, vertical burning tests, and microscale combustion calorimeter. The burned compounds were also studied to confirm the burning mechanism. The results showed the flame retardant performance had been greatly improved, while polyamide 6 had better char-forming effect. Besides, the water solubility of flame retardants and their influence on the mechanical properties of polypropylene were also investigated. The results on the effects of additives demonstrated a high efficiency flame retardant to polypropylene. A core-shell flame retardant that sodium silicate and melamine-formaldehyde resin-coated ammonium polyphosphate had been constructed. The effect of the built flame retardant system on the combustion performance of polypropylene was studied from the mechanism and performance. The LOI of the most flame retardant polypropylene reached 28.6%, and UL-94 reached the V-0 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号