首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
莱钢2号1 880 m~3高炉因频繁停产导致炉况波动,进而发展为炉墙结厚。高炉操作者通过打水降料线的方式,快速解决了炉墙结厚问题,使高炉炉况逐步恢复正常。本文对炉墙结厚处理过程进行了总结,并对挂结物的形成原因与脱落机理进行了分析。  相似文献   

2.
对莱钢1号1 880 m~3高炉停炉实践进行总结。本次停炉采用降料线打水方法,过程中严格控制炉顶温度与炉顶打水量,采用跟踪取样式对炉顶煤气进行取样分析与炉内打水操作相结合,整个停炉过程历时22 h 28 min。由于期准备充分,风量、炉顶打水量、煤气成份等各项参数控制合理,实现安全、快速、顺利停炉,顺利将料面降到风口以下,实现了安全停炉。  相似文献   

3.
石横特钢1#1 050 m3高炉用降料面的方式处理炉墙结厚,降料面过程中,间断调整焦炭负荷,控制风量,控制合理工艺参数和优化炉顶打水,减少煤气爆震,实现全程煤气回收,过程安全、顺利、环保,达到了预期效果。同时,为了尽快赶上料线,高炉采用均匀堵风口方式,提高鼓风动能吹透中心;使用兼顾边缘气流的布料矩阵调整方式,形成稳定料面平台和漏斗,平稳提高料面;料线深度与布料角度、原料结构合理搭配,缩短了赶料线时间,消除了长期低料线对高炉的危害。  相似文献   

4.
《炼铁》2018,(5)
宣钢两座2500m~3高炉均出现了炉墙结厚现象,原燃料条件变差是炉墙结厚的诱因,入炉焦炭质量的劣化是炉墙结厚的主要原因。通过采取控料线集中加焦热洗、配加锰矿萤石洗炉、堵风口等措施处理炉墙结厚,炉况恢复正常。认为保证良好的原燃料条件、避免长时间休风及频繁休风、适宜的风速及鼓风动能、充沛的炉缸热量等是炉缸活跃与高炉稳定顺行的重要保证。  相似文献   

5.
为更换损坏的铜冷却壁,莱钢3 200 m~3高炉进行了为期432 h的计划中修。采用空料线炉顶打水的方法停炉,加装临时打水装置,打水雾化严格控制炉顶温度,合理安排出渣铁,降料面到预定位置。高炉各项运行参数控制合理,实现了安全顺利停炉。  相似文献   

6.
由于长时间配吃经济料,邯钢1#高炉(炉容3 200m~3)采用开放中心的布料制度,在处理炉缸侧壁温度升高时过度抑制边缘,造成高炉频繁发生炉墙结厚现象。通过提高原燃料质量、推行标准化作业、加强炉前出铁管理、优化上下部调剂等措施的综合治理,高炉的炉墙频繁结厚得到了有效控制,焦比为340.6 kg/t、煤比为12.3 kg/t、煤气利用率为49.6%。  相似文献   

7.
阐述2550 m~3高炉在降料线停炉过程中,通过采取改进炉顶雾化打水、向炉内通入氮气等措施,实现了"零"爆震的安全停炉。凉炉结束后经炉内测量料线边缘已降至风口以下0.3~0.5 m,中心最深处距风口中心线下2 m,完全达到施工要求,做到了安全、精准降料线停炉。  相似文献   

8.
对莱钢2~#1 880 m~3高炉炉墙结厚特征及形成原因进行了探讨和分析,总结了高炉因配吃部分指标较差的焦炭导致炉况波动,进而引发炉墙结厚的炉况表现与处理过程。仅采取中心加焦、调整布料制度、洗炉等常规措施,并未能从根本上解决炉墙结厚问题。最终挂结物因低料线事故脱落。通过分析挂结物的脱落机理,认为降料线操作也是处理炉墙结厚的有效手段。  相似文献   

9.
济钢2~#1 750 m~3高炉按照计划进行降料面停炉。通过停炉前保持稳定的炉况顺行基础,停炉过程中控制好风量和配合合理的打水量,严格控制炉顶温度和煤气中氢氧的含量,合理组织炉前出铁等措施,停炉过程安全顺利,共用时10 h55 min,达到了停炉低碳低消耗的目的。  相似文献   

10.
《炼铁》2014,(5)
结合重钢2500m~3高炉炉墙结厚处理实例,简述了炉墙结厚的征兆,初步阐明了炉墙结厚的形成机理和原因,重点提出了炉墙结厚的处理方法和预防措施。  相似文献   

11.
对酒钢1 000 m~3高炉空料线停炉操作进行了总结。其主要经验是:停炉前做好准备工作,合理调整炉况;尽量使用大风量、高风温,缩短降料线的时间;控制好风压、风量和炉顶打水,控制顶温在400~550℃范围内,减少爆震,回收煤气,确保安全停炉。准确选择残铁口位置,并对放残铁操作进行探讨。  相似文献   

12.
冯宏斌  高雪生  冯广斌 《炼铁》2004,23(3):36-38
对长钢3号高炉炉墙结厚的原因及处理进行了总结分析。认为人炉原料质量变差、操作上采取措施不到位是导致高炉炉墙结厚的主要原因。通过冷却壁水温差变化来确定其结厚部位,然后,采用发展边缘煤气流、控制冷却强度、改善入炉原料质量、集中循环洗炉等措施来消除结厚,恢复正常生产,取得了较好的效果。  相似文献   

13.
王徐波 《山西冶金》2024,(1):124-126
根据公司生产计划要求,莱钢1号1 880 m3高炉于2023年9月7日12:00开始降料线停炉。9月8日2:08,料线降至预定位置(22.7 m),安全休风停炉。停炉过程安全、顺利、快速,各项参数控制到位。本次降料线总计耗时14 h 8 min、耗风198.4万m3、打水1 834 m3,出铁3炉。20:56,开始放残铁。9日00:36,残铁放完,共计放残铁386.25 t。通过精心组织,1 880 m3高炉安全顺利停炉,并创造了停炉降料线用时最短的记录。  相似文献   

14.
2015年8月由于水熄焦转换、烧结机喷煤故障,造成2 500 m3高炉紧急休风,导致高炉炉况长期波动、炉墙粘结严重。恢复过程受外部影响因素较多,导致炉况进一步恶化,必须停炉处理高炉炉墙粘结。通过降料面扒炉处理炉墙结厚和炉缸堆积等问题,停炉7天之后,高炉炉况恢复正常。  相似文献   

15.
高炉炉墙结厚   总被引:2,自引:0,他引:2  
李安宁 《炼铁》1991,10(3):56-59
  相似文献   

16.
对莱钢2#1 880 m~3高炉炉墙结厚特征及形成原因进行了探讨和分析,高炉因配吃部分指标较差的焦炭导致炉况波动,进而引起炉墙结厚事故。通过采取中心加焦、调整布料制度、洗炉等一系列常规措施,炉墙挂结物松动。在高炉料线降低后,挂结物失去支撑并在重力的作用下脱落,高炉各项指标得到了恢复,并通过后期实践验证了降料线处理炉墙结厚方法的有效性。  相似文献   

17.
为更换损坏的冷却壁,莱钢1~#1880m~3高炉进行了降料线停炉操作。由于停炉炉况基础较差,降料线前进行了小休风操作,更换打水枪、安装临时打水装置等,采用炉顶打水控制顶温,通过料线与煤气成分结合判断料面位置,将料面降至风口以下,实现了安全、顺利停炉。  相似文献   

18.
莱钢1~#1 880 m~3高炉因冷却壁联管漏水计划定休120 h进行处理。因连续休风炉况表现较差,休风期间通过快速堵风口以及大套砌砖刷浆等手段密封效果良好,送风管道预热效果明显。高炉经3个阶段的恢复,采取偏开风口操作,通过提前捅开未使用东铁口上方的风口,对加快炉况的恢复创造了条件,对出铁和烧坏风口的影响较小,实际休风时间为143 h38 min。建议有计划长时间(120 h以上)休风时,提前1 d增大铁口角度,尽量排出炉缸内积存渣铁。  相似文献   

19.
《炼铁》2017,(5)
简要分析了宝钢3号高炉炉墙结厚的原因,重点阐述了炉墙结厚的处理措施。2016年7月上旬3号高炉发生炉墙结厚,认为原燃料质量变差,入炉粉末增多,锌负荷异常上升是造成本次炉墙结厚的诱因;在原燃料质量发生波动时,布料制度和冷却制度调整不及时是造成本次炉墙结厚的主要原因。以确保高炉顺行为主方向,通过采取大幅退焦炭负荷、连续添加紧急空焦、提高燃料比与炉温、提高冷却水进水温度并降低水量、降低风口前理论燃烧温度等措施,成功处理了炉墙结厚。  相似文献   

20.
对唐钢2号高炉炉墙结厚原因及处理进行分析总结,通过改善原燃料质量,调整上下部制度,加强操作炉型管理等措施,实现高炉长期稳定顺行,提高技术经济指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号