首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
非金属夹杂物类型、数量、尺寸、形貌对SWRCH22A冷镦钢开裂有重要的影响。为了研究SWRCH22A冷镦钢凝固冷却过程中非金属夹杂物的转变,通过Aspex夹杂物自动分析仪对连铸过程钢中非金属夹杂物类型、数量、尺寸、形貌进行观察。研究发现,实际生产中,中间包钢液中夹杂物主要为Al_2O_3-CaO类夹杂物,而铸坯中夹杂物主要为MgO-CaO-Al_2O_3-CaS夹杂物,连铸过程中夹杂物从Al_2O_3-CaO转变为MgO-CaO-Al_2O_3-CaS。铸坯中夹杂物数密度和面积分数小于中间包中夹杂物数密度和面积分数。此外,通过FactSage热力学计算软件计算了SWRCH22A冷镦钢凝固冷却过程中夹杂物的转变相图和成分,为连铸过程钢中夹杂物的转变提供理论解释。  相似文献   

2.
为了研究钢液凝固和冷却过程中非金属夹杂物的生成热力学,以U75V重轨钢为研究对象,通过Aspex自动扫描电镜对不同钢液成分的中间包钢水样和连铸坯样进行分析,结合热力学计算,得到了重轨钢凝固和冷却过程中夹杂物的转变机理。研究结果表明,重轨钢中间包内主要为CaO-SiO_2-Al_2O_3-MgO型夹杂物,且夹杂物成分均匀;凝固冷却过程不仅导致夹杂物成分的变化,也会导致相的不均匀性,连铸坯中的夹杂物为CaO-SiO_2-Al_2O_3-MgO-CaS型,夹杂物中CaO含量降低,CaS含量升高,凝固冷却后的夹杂物由CaS、MgO·Al_2O_3以及CaO-SiO_2-Al_2O_3-MgO等多相组成,其中MgO·Al_2O_3相位于CaO-SiO_2-Al_2O_3-MgO相内部,最外层包裹CaS。热力学计算结果与试验结果基本吻合,夹杂物成分差异可能由于热力学和动力学条件不足引起。  相似文献   

3.
齿轮是机械传动的关键结构部件,为了改善齿轮的服役性能,提高疲劳寿命,需要清楚齿轮钢中的夹杂物类型、数量、尺寸、分布。采用夹杂物自动扫描仪、氧含量分析手段、扫描电镜对齿轮钢锻件不同位置进行夹杂物评估。结果表明:铸件中心位置TO质量分数较高,为10×10~(-6),对应小尺寸夹杂物数量较多,而大尺寸夹杂物在关键区域的分布较多。钢中氧化物夹杂主要为Al_2O_3、Al_2O_3复合类的尖晶石和钙铝酸盐复合夹杂物,且尺寸较大,分布不均匀,对齿轮钢关键区域的影响较大。钢中硫化物夹杂分布均匀,尺寸较小,热力学计算表明,该类夹杂在凝固过程中凝固率g0.44时,MnS开始析出,通过控制硫化物夹杂析出及分布有助于改善齿轮钢质量。  相似文献   

4.
钢中非金属夹杂物对钢的性能有很大的影响。在连铸过程中,随着温度的降低,钢液冷却凝固,钢与夹杂物之间的热力学平衡发生移动,从而导致夹杂物平均成分的转变。因此,研究钢液凝固和冷却过程中夹杂物的转变是有意义的。以20CrMnTiH含硫齿轮钢为研究对象,用热力学和工厂试验研究了钢液凝固和冷却过程中夹杂物的演变。结果表明,中间包钢样和连铸坯中夹杂物都以Al_2O_3-Ti_2O_3-MgO-CaO-CaS型夹杂物为主,但连铸坯中夹杂物中CaO含量明显低于CaS含量。这与凝固冷却过程的热力学计算得出的CaO夹杂物的转变规律一致。但由于热力学和动力学条件的不足,计算得出的夹杂物平均成分与实际检测值仍存在一定差异。  相似文献   

5.
王祎  张立峰  杨文  雷勋惠  张继  赵根安 《炼钢》2020,36(2):29-33,41
Q345钢生产过程中通过钙处理改性夹杂物,中间包钢水中夹杂物为钙铝酸盐包裹镁铝尖晶石的结构,平均成分为45.71%Al_2O_3-40.22%CaO-6.50%MgO-6.60%CaS-0.97%SiO_2。连铸坯冷却凝固过程,夹杂物发生转变,连铸坯表层冷却速度快,相转变来不及发生,夹杂物成分与中间包钢水中相差不大。连铸坯内弧1/4处夹杂物转变为CaS和MnS包裹镁铝尖晶石的结构,忽略MnS归一化后的平均成分为56.00%Al_2O_3-9.28%CaO-9.07%MgO-25.06%CaS-0.58%SiO_2。从连铸坯边部到中心,夹杂物Al_2O_3和CaS含量显著升高,CaO含量显著降低,夹杂物中硫化物面积分数从边部的0.000 01%升高至中心的0.002 9%,表明硫化物在连铸坯冷却凝固过程中大量析出。采用Factsage 7.0热力学软件计算了Q345钢冷却凝固过程夹杂物的转变,结果与夹杂物检测结果变化趋势一致,且小尺寸夹杂物因动力学上转变更充分而与计算结果更接近。  相似文献   

6.
为了更好地控制WG350无取向电工钢中的夹杂物,采用扫描电子显微镜、Aspex系统分析了精炼、连铸过程和成品板中夹杂物的类型、数量及尺寸的演变规律。结果表明,氩站开始出现大尺寸含P复合夹杂物,该类型夹杂物大部分在RH脱碳后会上浮去除。RH加铝脱氧时生成的Al_2O_3以团簇状和块状为主,前者尺寸范围为0.5~5μm且大部分被去除,而块状Al_2O_3会一直遗留至成品中。RH合金化后,钢液中夹杂物数量达到最大,夹杂物类型除Al_2O_3外,主要还有复合氧化物、复合氧硫化物。成品板中夹杂物种类及数量关系为:氧硫化物氧化物氮化物氮化物+氧化物氮化物+硫化物氮-氧-硫复合物硫化物。钢中氧硫(质量分数)由49×10~(-6)降低至13×10~(-6)时,夹杂物种类及数量均会大幅度减少。  相似文献   

7.
利用夹杂物自动分析系统在实验室中研究了钢中Ce含量对热影响区夹杂物演化的作用。结果表明,随着钢中Ce含量的增加,夹杂物的数量密度、平均尺寸和以Al_2O_3为核心的复合夹杂物比例都减少,夹杂物中Ce的含量和含Ce夹杂物的比例都增加,典型夹杂物核心由Al_2O_3+Ce_2O_3变为Ti_2O_3+Ce_2O_3,外部都析出MnS。当钢中Ce质量分数大于140×10~(-6)时,出现以Ti-Ce复合氧化物为核心的夹杂物。随着夹杂物中Ce含量的增加,钢中夹杂物的尺寸减小。Ce氧化物冶金工艺对夹杂物的细化作用明显。  相似文献   

8.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

9.
摘要:齿轮是机械传动的关键结构部件,为了改善齿轮的服役性能,提高疲劳寿命,需要清楚齿轮钢中的夹杂物类型、数量、尺寸、分布。采用夹杂物自动扫描仪、氧含量分析手段、扫描电镜对齿轮钢锻件不同位置进行夹杂物评估。结果表明:铸件中心位置TO质量分数较高,为10×10-6,对应小尺寸夹杂物数量较多,而大尺寸夹杂物在关键区域的分布较多。钢中氧化物夹杂主要为Al2O3、Al2O3复合类的尖晶石和钙铝酸盐复合夹杂物,且尺寸较大,分布不均匀,对齿轮钢关键区域的影响较大。钢中硫化物夹杂分布均匀,尺寸较小,热力学计算表明,该类夹杂在凝固过程中凝固率g>0.44时,MnS开始析出,通过控制硫化物夹杂析出及分布有助于改善齿轮钢质量。  相似文献   

10.
程林  杨文  李树森  任英  张立峰 《炼钢》2019,35(6):60-66
对"BOF→LF→RH→钙处理→CC"工艺生产X70管线钢过程的夹杂物行为演变进行了研究。发现LF精炼过程夹杂物由多面体Al_2O_3转变为球形的MgO-Al_2O_3-CaO-CaS复合夹杂。RH精炼过程夹杂物成分变化不大,但是夹杂物数量和尺寸都减小。钙处理后,夹杂物中的CaO和CaS含量增加,w(CaO)/w(Al_2O_3)增大,平均成分偏离低熔点区。在连铸过程由于二次氧化导致钢中Al_s和T.Ca含量降低,同时中间包夹杂物中CaO和CaS含量有所降低,夹杂物数密度和最大尺寸都有所增加,应加强浇铸过程的保护浇铸,以更好地保证钙处理效果。由于降温过程钢-夹杂物之间平衡的移动,夹杂物由中间包中液态的CaO-Al_2O_3转变为铸坯中的以Al_2O_3-CaS和MgO-Al_2O_3类型为主的高熔点夹杂物。  相似文献   

11.
以SPHD钢在BOF-RH-CC工艺生产过程中夹杂物的演变为研究对象,分析了从精炼出站到连铸过程钢中T. O、[N]的变化情况,研究了夹杂物数量、尺寸分布以及成分演变规律.结果表明:从RH精炼出站到中间包,钢中T. O和[N]含量增加,单位面积夹杂物数量升高,钢水因二次氧化产生了Al_2O_3夹杂.夹杂物尺寸变化主要集中在10μm以下的夹杂物,其中小于5μm夹杂物所占比例降低,5~10μm夹杂物所占比例增多,钢包与中间包之间的保护浇铸需要加强.部分Al_2O_3夹杂可转变为低熔点且易被去除的CaO-MgO-Al_2O_3系或CaO-MgO-Al_2O_3-SiO_2系等复合夹杂,铸坯内夹杂物主要以Al_2O_3,Al_2O_3-SiO_2,CaO-SiO_2以及CaO-Al_2O_3-SiO_2等形式存在,也有附着少量MnS的Al_2O_3夹杂.  相似文献   

12.
《炼钢》2015,(6)
针对超低氧含量特殊钢中大型非金属夹杂物问题开展了相关工业试验和实验室研究,研究结果表明:1)当钢液w(T.O)低于(13~15)×10~(-6)后,通过LF精炼进一步降低钢液总氧和夹杂物含量变得困难。而RH真空精炼在钢液超低氧含量条件下则具有非常强的进一步降氧和去除夹杂物的能力,将RH精炼时间延长至33 min左右,钢液w(T.O)降至4.7×10-6,尺寸1.5μm以上夹杂物数量减少至1.77个/mm~2。2)超低氧特殊钢中夹杂物在钢液二次精炼过程会经历"Al_2O_3→MgO-Al_2O_3→CaO-MgOAl_2O_3→CaO-Al_2O_3"转变,其中Al_2O_3向MgO-Al_2O_3系夹杂物转变是由于钢液[Mg]与Al_2O_3夹杂物的反应,而[Mg]主要来源于[Al]还原钢包包衬MgO的反应。3)在w(T.O)=5.9×10-6的特殊钢连铸圆坯试样中检测到尺寸100~330μm的大型簇群状CaO-MgO-Al_2O_3系夹杂物,构成簇群的微小颗粒与钢液中微小夹杂物类似,表明是在连铸过程由钢液中微小夹杂物聚合而成。4)经过RH精炼,钢中夹杂物绝大多数已转变为液态CaO-Al_2O_3系夹杂物,而连铸过程发生的二次氧化,会将钢中夹杂物转变为高熔点的CaO-Al_2O_3系、MgO-Al_2O_3系或CaO-MgO-Al_2O_3系固态夹杂物,固态夹杂物更易聚合为大型夹杂物,因此在超低氧特殊钢生产中必须非常严格地控制二次氧化。  相似文献   

13.
采用扫描电镜和大样电解等检验方法对抗硫管线钢的冶炼过程试样和连铸坯中夹杂物的数量、尺寸、成分、形貌进行系统分析。结果表明:钢液经过LF精炼后,显微夹杂物的面积比降低了34.7%;中间包钢液的夹杂物面积比较VD出站增加了6.1%。LF进站钢液中的夹杂物主要为Al_2O_3夹杂物,在LF精炼和VD真空处理过程中由于钢渣间的相互作用,形成以CaO、MgO、Al_2O_3为主要组成的复合型夹杂物。钙处理后夹杂物中的CaO和Al_2O_3的物质的量比接近12∶7,并与钢液发生了脱硫反应,形成了含CaS的复合夹杂物。中间包开浇阶段铸坯中的显微夹杂物和大型夹杂物都明显高于稳定浇铸状态;在稳定浇铸状态下,铸坯中的w(T[O])小于15×10~(-6),大型夹杂物的含量小于0.2 mg/kg;大型夹杂物的主要来源是钢包引流砂、结晶器保护渣。  相似文献   

14.
基于前人的研究结果,通过热力学计算软件Factsage 7.1分析了20CrMnTiH齿轮钢中复合脱氧平衡。热力学计算结果表明, LF精炼初期,钢中非金属夹杂物的主要成分为Al_2O_3;随着耐火材料的侵蚀以及合金的加入,氧化物夹杂转变为Al_2O_3·MgO,并含有少量CaO;钛合金化后,氧化物夹杂的种类无明显变化,主要成分为Al_2O_3·MgO,由于钛铁中带入少量Ca,氧化物夹杂中CaO略有增加;钙处理后,氧化物夹杂中CaO含量明显增加,Al_2O_3·MgO转变为Al_2O_3·MgO·CaO,夹杂物的平均成分落入液态夹杂物区域。热力学计算结果与实际生产过程中夹杂物的转变具有相同的规律,但实际生产过程由于多元脱氧体系中合金及脱氧元素加入顺序以及动力学因素导致与实际情况具有一定差异。  相似文献   

15.
通过对唐钢FTSR冷轧基料(SPHC)钢种整个浇次全程跟踪取样,采用美国ASPEX对所取钢样中夹杂物进行自动扫描检测,分析研究了SPHC钢中非金属夹杂物的主要来源、数量、尺寸分布、组成和类型的演变规律。结果表明:到站喂铝线后夹杂物主要为Al_2O_3,精炼过程中钢液中形成MgO-Al_2O_3系夹杂物。喂铝线夹杂物上浮后,尺寸大于5μm的夹杂物数量为15%;钙处理后,Al_2O_3和Mg O-Al_2O_3系夹杂物变形效果较好,夹杂转变为CaO-CaS-Al_2O_3复合夹杂,尺寸小于5μm的夹杂物大于95%以上。提出了优化造渣、吹氩制度,优化生产组织模式,提高保护浇铸水平等措施,达到了降低夹杂物含量、缩短精炼周期、降低生产成本的目的。  相似文献   

16.
对涟钢LG600/LG700XL冶炼过程中夹杂物的衍变机理进行分析,分批次试验研究了精炼渣性能和钙处理工艺对钢液洁净度和钢中夹杂物的影响。结果表明,在钙处理工艺下,夹杂物的衍变路线为Al_2O_3→MgO-Al_2O_3→Al_2O_3-CaO,中间包钢液中的夹杂物主要是Al_2O_3-CaO和Al_2O_3-TiO_x复合氧化物。取消钙处理以后,铸坯中氧的质量分数从16×10~(-6)降低到11×10~(-6)。两种工艺下,材样中绝大部分夹杂物都是核心为铝酸盐、外层为TiN的复合夹杂,钙处理工艺下夹杂物核心是Al_2O_3-CaO-CaS,取消钙处理工艺下夹杂物核心是MgO-Al_2O_3尖晶石。两类复合夹杂物尺寸都比较小(10μm),对钢材性能的影响有限。取消钙处理以后,钢液可浇性基本保持不变,没有发生水口堵塞,说明取消精炼过程中的钙处理工艺对涟钢高强机械用钢而言是可行的。  相似文献   

17.
超低碳钢对控制夹杂物要求日益提高,并且Al-Ti复合夹杂物对水口结瘤和产品质量具有重要影响。基于此,对Al-Ti夹杂物的特征、生成及演变过程、形成机理和控制要素进行了详细分析。试验在精炼过程及中间包中进行密集取样,借助Aspex扫描电镜对夹杂物数量、尺寸、形貌和化学组成进行自动分析。结果表明,钛合金化后由于钢液存在高钛浓度区域,该区域发生反应导致Al_2O_3夹杂物变性为Al-Ti夹杂物,为了抑制反应进行,应控制铝钛间隔时间为4 min;连铸过程二次氧化会影响Al-Ti夹杂物生成,二次氧化明显,炉次中间包Al-Ti夹杂物数量较多,主要原因是钢液内部w([O])的升高抑制了Al-Ti夹杂物向Al_2O_3夹杂物变性反应的进行;钢液局部w([O])较高区域,钢中铝、钛、氧直接反应生成Al-Ti夹杂物。  相似文献   

18.
夹杂物是影响无取向电工钢磁性能的重要因素之一,为了研究无取向电工钢生产过程中氧化物特征的变化,对W800无取向电工钢全流程取样分析。采用荧光光谱分析和氧氮联合分析仪分析了炉渣和钢中全氧含量的变化。采用直接磨抛后1∶1盐酸水溶液酸蚀和非水溶液小样电解的方法揭示了钢中氧化物的形貌特征。采用ASPEX对钢中氧化物的成分、尺寸、数量进行分析。试验结果表明,加Al合金化前,钢中的氧化物类型主要为球体或近球体的SiO_2和含有少量的SiO_2包裹SiO_2-MnO;加Al合金化后,氧化物转变为Al_2O_3和MgO·Al_2O_3。通过直接磨抛和1∶1盐酸水溶液酸蚀的方法只能揭示出球形和多面体的Al_2O_3。采用非水溶液电解提取可以看到Al_2O_3的3种形貌为球体、树枝状和多面体。RH精炼过程中,夹杂物平均成分接近纯Al_2O_3,MgO的质量分数仅为0.2%。而在中间包冶炼过程中,夹杂物中MgO比例提高。软吹过程对于促进夹杂物长大和去除具有显著效果,也促进了耐火材料的侵蚀,使夹杂物中MgO的质量分数升高至8.1%。由于精炼过程采用较低的碱度和钙铝比,夹杂物中几乎不含CaO。通过Factsage热力学计算得出,随着Al的加入量增多,钢中的夹杂物类型依次为纯SiO_2,液态的SiO_2-Al_2O_3和Al_2O_3,与观察到的结果相符。  相似文献   

19.
为了提高304不锈钢的洁净度水平,对中间包二次氧化过程中TO含量与氮含量,以及夹杂物成分、数密度、平均尺寸和面积分数的变化进行了分析。研究表明,LF出站时钢中夹杂物主要为CaO-SiO_2-Al_2O_3,由于开浇时钢液发生了二次氧化,钢中生成大量小尺寸的高MnO夹杂物,夹杂物主要成分转变为Al_2O_3-SiO_2-MnO;同时,夹杂物面积分数升高,数密度增大,平均尺寸减小。随着浇铸过程的进行,由于二次氧化影响较小,夹杂物由SiO_2-Al_2O_3-MnO逐渐转变为CaO-SiO_2-Al_2O_3,夹杂物的数密度、面积分数逐渐减小。通过热力学计算得出,随着二次氧化吸氧量的增加,夹杂物中MnO含量持续增高,导致大量Al_2O_3-SiO_2-MnO夹杂物生成。  相似文献   

20.
利用钢中非金属夹杂物成分变化的集成模型,介绍了夹杂物成分随时间和冷却速率的变化,提出了夹杂物成分转变分数的概念,然后介绍了夹杂物成分转变的等温转变曲线(TTT)、连续冷却转变曲线(CCT)和等径转变曲线(TDT)的概念及应用.该集成模型考虑了钢液流动、传热、凝固和元素偏析,也考虑了钢与夹杂物反应的热力学和动力学.然后以管线钢、重轨钢和轴承钢为例,进一步分析讨论了钢液凝固与冷却过程中的冷却速率、固体钢加热过程中的加热温度和加热时间、钢成分以及夹杂物尺寸等参数对夹杂物成分转变的影响.这些概念和特征曲线能够直观展示在钢液凝固冷却过程及固体钢加热过程钢中非金属夹杂物的成分转变,将钢中夹杂物的控制方略从钢液拓展到固体钢中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号