首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
罗海瀚  刘定权  尹欣  张莉 《光电工程》2011,38(12):90-93
锗(Ge)薄膜是中长波红外区最常用的光学薄膜之一,高的聚集密度对于提升光谱稳定性和光学薄膜元件的品质非常重要.选用纯度为99.99%的Ge材料,在5× 10-4 Pa左右的真空压力下用电子束蒸发沉积,石英晶振仪将沉积速率控制在0.8~1.0 nm/s范围,宝石片基片上的膜层厚度约为0.8~1.0μm,在不同沉积温度下制...  相似文献   

2.
磁控溅射法制备电磁屏蔽织物的研究   总被引:5,自引:0,他引:5  
本文采用直流磁控溅射在无纺布基底上溅射沉积金属铜来制备电磁屏蔽织物。通过原子力显微镜观察发现,工艺参数对溅射沉积速率以及膜层的表面形貌都有较大的影响。在一定范围内,溅射功率越大,沉积速率越大,膜层颗粒分布越均匀致密。溅射压力一般选取0.9 Pa左右为宜,在此压力下,溅射沉积速率最大。经测试膜层与基底结合牢度较好,溅射沉积铜后透气性变化较小。频谱分析仪测试结果表明织物的屏蔽性能十分优良。  相似文献   

3.
为研究偏压对通过电弧离子沉积法沉积的锆膜性能的影响,并探究锆膜在不同存储条件下的氧化程度,通过调整沉积过程偏压的大小以及占空比制备多组试样,利用扫描电子显微镜、X射线测厚仪、X射线衍射仪以及纳米划痕仪对薄膜的表面形貌、沉积速率、薄膜结构、膜基结合力进行了研究。并利用X射线光电子能谱测试了锆膜在不同存储状态下的氧化程度。结果表明,偏压的增大会提升膜层表面光洁度。但因高能粒子反溅射作用的增强,会降低薄膜的沉积速率。同时,膜基结合力随着偏压的增大有升高的趋势,且膜层的(100)晶面择优趋势会逐渐减小。另外,偏压占空比的增加也会导致沉积速率下降。锆膜表面的氧化层厚度随着时长会逐渐增大,且膜层在大气中暴露一天的氧化程度比真空存储(10-5 Pa)半年严重。  相似文献   

4.
采用直流磁控溅射法,在溅射气压为7.0×10~(-1) Pa和不同溅射功率(72~144W)下,制备出PEN/Ti纳米复合薄膜。研究了不同溅射功率对Ti膜微观组织、表面粗糙度、硬度及生长方式的影响规律。结果表明,直流磁控溅射法在PEN柔性衬底上沉积的钛膜是一种纳米多晶薄膜;随着溅射功率的增加,钛膜沉积速率及钛膜弹性模量皆升高,而钛膜表面粗糙度与钛膜晶粒尺寸均减小;溅射功率的增加将抑制钛膜柱状生长方式。在溅射气压为7.0×10~(-1) Pa,溅射功率为144 W时的工艺参数下,获得性能最佳的复合薄膜。  相似文献   

5.
采用等离子体增强化学气相沉积(PECVD)工艺在多晶硅片上生长SiMx:H膜,研究了不同反应气体压力对SiMx:H膜层性能的影响,以寻求SiNx:H膜光学性能和钝化效果之间的平衡关系。在气体压力为0.25Pa时,SiNx:H膜的折射率和钝化效果均达到理想的范围,并经840℃热处理后钝化效果得到进一步提高,与烧结工艺温度相匹配。气体压力0.25Pa条件下沉积的SiMx:H膜制成太阳电池后开路电压和短路电流最高,电池性能最佳。  相似文献   

6.
利用冷阴极电弧源镀膜时,源喷射微粒其直径从亚微米至十几微米,随弧流增加,微粒密度、膜沉积率及大直径微粒均上升。本文给出了上述试验结果及按直径分布微粒密度图。给出了阴极工作表面平均温度计算公式,计算了灼坑(CRATER)半径与弧流关系,为合理选择源工作参数,进行源设计提供了依据。  相似文献   

7.
本文采取4因子4水平田口设计,用等离子体增强化学气相沉积法制备了沉积在白玻璃上的单层N+A-SI:H薄膜,测试了薄膜的应力,膜厚,折射率,透过率,及SI-H/N-H键含量,综合评价不同参数配比条件下N+A-SI:H单层膜的膜质表现,针对比较重要的参数:沉积速率,Thickness Uniformity,SI-H键含量进行了田口分析,两阶段策略优化选出PECVD制程中的N+A-SI layer的最佳参数配比为:Pressure-385.7 Pa,Spacing-20.32 mm,RF Power-13000W,Gas Ratio-3.12。  相似文献   

8.
《真空》2020,(5)
利用直流磁控溅射技术(DCMS)制备锐钛矿TiO_2薄膜,研究了工艺参数中的衬底温度、压强和溅射功率对TiO_2薄膜的沉积速率的影响,利用场发射扫描电镜(FESEM)、X射线衍射仪(XRD)和椭圆偏振光测试仪表征了样品的表面形貌、结构和膜厚,实验结果表明:利用DMS制备薄膜为单一的的锐钛矿结构,表面组成颗粒均匀。随着沉积温度的增加,薄膜的沉积速率从100℃的2.16nm/min增加至400℃的4.03nm/min;压强增加,薄膜的沉积速率降低,0.75Pa、1.5Pa和3.0Pa条件下的沉积速率分别为4.48nm/min、3.18nm/min和2.42nm/min;溅射功率增加,沉积速率提高,100W、295W和443W对应的沉积速率分别为2.95nm/min、3.18nm/min和7.50nm/min。最后用TFC膜系设计软件在玻璃基底上设计了双层TiO_2薄膜,利用设计结果制备了薄膜,实验值和理论设计结果非常吻合。  相似文献   

9.
真空度对冻干速率的影响   总被引:1,自引:0,他引:1  
对真空度影响冻干速率进行了实验研究。实验选取了三种工作压力:13.33Pa,20Pa 和26.67Pa 进行试验。结果表明,在上述压力范围内,压力越高,冻干速率越快。在更广泛压力范围内压力对冻干速率的影响,尚需进一步研究。  相似文献   

10.
本文采取4因子4水平田口设计,用等离子体增强化学气相沉积法制备了沉积在白玻璃上的单层N+A-SI:H薄膜,测试了薄膜的应力,膜厚,折射率,透过率,及SI-H/N-H键含量,综合评价不同参数配比条件下N+A-SI:H单层膜的膜质表现,针对比较重要的参数:沉积速率,Thickness Uniformity,SI-H键含量进行了田口分析,两阶段策略优化选出PECVD制程中的N+A-SI layer的最佳参数配比为:Pressure-385.7 Pa,Spacing-20.32 mm,RF Power-13000W,Gas Ratio-3.12。  相似文献   

11.
介绍了磁控反应溅射制备氧化锡薄膜时,反应气体氧流量对放电参数、薄膜沉积速率及沉积膜性能的影响。指出随氧流量的不同,放电分别处于金属溅射、过渡溅射和氧化物溅射三种不同的模式。三种模式下的放电电压及沉积速率均有较大差别,相应的沉积膜依次具有金属相、金属及氧化物混合相和氧化物相三种不同属性。  相似文献   

12.
钛阳极磁控溅射钽的工艺研究   总被引:5,自引:1,他引:5  
涂层钛阳极在使用中会因氧化而失效.为了开发新型的涂层钛阳极,进行了磁控溅射钽作钛阳极底层的研究.通过改变溅射功率、氩气压力及溅射时间,对不同工艺条件下沉积的钽膜进行了分析.用XRD分析了溅射层的成分及相结构;通过SEM,AFM观察了钽膜的微观形貌和颗粒尺寸;用拉开法测定了钽膜的附着力.综合分析了影响钽膜质量的因素,推荐磁控溅射3~4靘钽膜的优化工艺为:功率100~130 W,氩气压力0.1~0.3 Pa,溅射时间45~50 min.钽膜作为底层可提高二氧化铅阳极的使用寿命40倍以上.  相似文献   

13.
TiO_2磁控溅射工艺参数对薄膜沉积速率的影响   总被引:1,自引:0,他引:1  
为了经济、有效、准确地在线测量光学薄膜厚度,采用射频磁控反应溅射法在玻璃衬底上制备TiO2薄膜。用自制的简易监测系统对TiO2薄膜在生长过程中的沉积速率进行了即时测量,研究了射频功率、气体流量、工作气压等工艺参数对TiO2薄膜沉积速率的影响规律。结果表明:沉积速率监测系统对膜厚变化反应灵敏,能够实时监测薄膜生长速率;溅射过程中,射频功率、氧氩流量比和工作气压对薄膜沉积速率有较大的影响,射频功率从120 W增加到240 W,薄膜沉积速率增加;氧气流量从1 mL/min增加到5 mL/min,薄膜沉积速率先逐渐增大后减小,存在一个临界点;工作气压从0.3 Pa增加到0.8 Pa,薄膜沉积速率缓慢增加,但临界点后迅速下降。  相似文献   

14.
SmCo薄膜的厚度是影响其磁性能的重要因素,而沉积速率是控制薄膜厚度的关键。采用直流磁控溅射工艺制备SmCo薄膜,设计正交实验并通过数理统计方法研究了溅射工艺参数中溅射功率、靶基距及氩气压强对SmCo薄膜沉积速率的影响,并同时考察了不同厚度SmCo薄膜的磁性能变化规律。研究结果表明:溅射功率与靶基距都对薄膜的沉积速率有较大的影响,其中在溅射功率为40~120W范围内时,随着溅射功率的增大SmCo薄膜的沉积速率逐渐提高;在靶基距为50~70mm的范围内,SmCo薄膜的沉积速率随靶基距的增大而逐渐降低;而在氩气压强处于0.7~1.5Pa范围内时,SmCo薄膜的沉积速率几乎不随氩气压强的改变而变化。在溅射功率为80W、靶基距为60mm及氩气压强为1.1Pa的工艺条件下,SmCo薄膜的沉积速率具有很好的稳定性。随膜厚从0.59μm增加到0.90μm,SmCo薄膜的矫顽力由23.4kA/m降低到8.2kA/m。  相似文献   

15.
陈美艳  童洪辉  沈丽如  金凡亚  赵燕 《功能材料》2012,43(13):1802-1805
多弧离子镀方法在15-5PH不锈钢材料表面制备结合力、硬度和致密性高的TiN涂层,提高材料表面硬度和抗高温氧化性能。分析结果显示过渡层成分、预热温度、工作气压及负偏压等主要参数对膜层性能影响明显。得到Ti为过渡层时,预热250℃,气压3.0Pa,600V偏压镀膜工艺参数最佳,制备的膜基结合力高于60N,表面硬度>1200HV0.05,膜层表面大液滴密度尺寸最低。膜层表面显微硬度、膜层沉积速率和膜基结合力随工作气压升高不同程度地先升高后降低。  相似文献   

16.
利用甚高频等离子增强化学气相沉积(VHF-PECVD)制备了一系列微晶硅(μc-Si:H)薄膜。研究分析了功率密度、硅烷浓度和气体流量在较高沉积气压(500 Pa和600 Pa)下对薄膜生长速率、结晶状况和电学特性的影响。研究表明:在高压强条件下,硅烷浓度和气体流量对沉积速率影响显著,而功率密度影响较弱;高沉积速率生长的薄膜孵化层较厚;电学特性较好的薄膜位于非晶/微晶过渡区。经过工艺的初步优化,在高压强(600 Pa)条件下,使微晶硅薄膜的沉积速率提升到2.1 nm/s。  相似文献   

17.
PLD工艺制备高质量ZnO/Si异质外延薄膜   总被引:1,自引:0,他引:1  
采用脉冲激光沉积工艺在不同条件下以Si(111)为衬底制备了Zno薄膜.通过对不同氧压下(0~50Pa)沉积的样品的室温PL谱测试表明,氧气氛显著地提高了薄膜的发光质量,在50Pa氧气中沉积的ZnO薄膜具有最强的近带边UV发射.XRD测试说明在氧气氛中得到的薄膜结晶质量较差,没有单一的(002)取向.利用-低温(500℃)沉积的ZnO薄膜作缓冲层,得到了高质量的ZnO外延膜.与直接沉积的ZnO膜相比,生长在缓冲层上的ZnO膜展现出规则的斑点状衍射花样,而且拥有更强的UV发射和更窄的UV峰半高宽(98meV).对不同温度下沉积的缓冲层进行了RHEED表征,结果表明,在600~650℃之间生长缓冲层,有望进一步改善ZnO外延膜的质量.  相似文献   

18.
电弧源喷射微粒及膜沉积率空间分布   总被引:1,自引:0,他引:1  
测量了冷阴极电弧源镀膜时膜沉积率及源喷出的微粒空间分布。为了获得最大沉积率及减少膜层中微粒,给出了工件最佳工作位置选择。  相似文献   

19.
磁控反应溅射制备氧化锡膜的工艺研究   总被引:6,自引:0,他引:6  
介绍了磁控反应溅射制备氧化锡膜时,反应气体氧流量对放电参数、薄膜沉积率及沉积膜性能的影响,指出随氧流量的不同,放电分别处于金属溅射,过渡溅射和氧化物溅射三种不同的模式。三咱模式下的放电电压及沉积速率均有较大差别,相应的沉积膜依次具有金属相、金属及氧化物混合相和氧化物相三种不同属性。  相似文献   

20.
为了解决化学气相沉积金刚石膜产业化进程中存在的生长速率慢、沉积尺寸小的难题,自行研制了适宜于大尺寸金刚石膜高速生长的电子辅助热灯丝式化学气相沉积(EAHFCVD)装置,通过反应气体中加氧将碳源浓度提高到10%以上,并优化反应压力与直流偏流密度二参数间的匹配,研究了该装置的生产特性,同时利用SEM、XRD和Raman光谱对沉积的金刚石膜进行了分析表征.研究结果表明,应用该装置高质量金刚石膜的沉积尺寸可达100mm以上,生长速率达到约10μm/h的水平,并制备出100mm×1 5mm的完整金刚石自支撑膜片,该技术可满足产业化生产的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号