首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a three-dimensional (3D) analytical solution of the electrostatic potential is derived for the tri-gate tunneling field-effect transistors (TG TFETs) based on the perimeter-weighted-sum approach. The model is derived by separating the device into a symmetric and an asymmetric double-gate (DG) TFETs and then solving the 2D Poisson’s equation for these structures. The subthreshold tunneling current expression is extracted by numerical integrating the band-to-band tunneling generation rate over the volume of the device. It is shown that the potential distributions, the electric field profile, and the tunneling current predicted by the analytical model are in close agreement with the 3D device simulation results without the need of fitting parameters. Additionally, the dependence of the tunneling current on the device parameters in terms of the gate oxide thickness, gate dielectric constant, channel length, and applied drain bias is investigated and also demonstrated its agreement with the device simulations.  相似文献   

2.
We have developed a two-dimensional analytical model for the channel potential, threshold voltage, and drain-to-source current of a symmetric double-halo gate-stacked triple-material double-gate metal–oxide–semiconductor field-effect transistor (MOSFET). The two-dimensional Poisson’s equation is solved to obtain the channel potential. For accurate modeling of the device, fringing capacitance and effective surface charge are considered. The basic drift–diffusion equation is used to model the drain-to-source current. The midchannel potential of the device is used instead of the surface potential in the current modeling, considering the fact that the punch-through current is not confined only to the surface in a fully depleted MOSFET. An expression for the pinch-off voltage is derived to model the drain current in the saturation region accurately. Various short-channel effects such as drain-induced barrier lowering, gate leakage, threshold voltage, and roll-off have also been investigated. This structure shows excellent ability to suppress various short-channel effects. The results of the proposed model are validated against data obtained from a commercially available numerical device simulator.  相似文献   

3.
An analytical model was developed to calculate the potential distribution for a gate-underlap double-gate tunnel FET. The electrostatic potential of the device was derived using the two-dimensional Poisson’s equation, incorporating the fringing electric field in the gate-underlap surface and employing a conformal mapping method. In addition to analytical potential modeling, the electric field and drain current were evaluated to investigate the device performance. Excellent agreement with technology computer-aided design (TCAD) simulation results was observed. The dependence of the ambipolar current on the spacer oxide dielectric constant, spacer length, channel length, and gate material thickness was examined using the proposed model. The effects of the variation of all of these parameters were well predicted, and the model reveals that use of a low-\(\kappa \) spacer dielectric combined with a high-\(\kappa \) gate dielectric results in the minimal ambipolar current for the device.  相似文献   

4.
In this paper, analytical subthreshold current and subthreshold swing models are derived for the short-channel dual-metal-gate (DMG) fully-depleted (FD) recessed-source/ drain (Re-S/D) SOI MOSFETs considering that diffusion is the dominant current flow mechanism in subthreshold regime of the device operation. The two-dimensional (2D) channel potential is derived in terms of back surface potential and other device parameters. The so called virtual cathode potential in term of the minimum of back surface potential is also derived from 2D channel potential. The virtual cathode potential based subthreshold current and surface potential based subthreshold swing model results are extensively analyzed for various device parameters like the oxide and silicon thicknesses, thickness of source/drain extension in the BOX, control to screen gate length ratio and channel length. The numerical simulation results obtained from ATLAS \(^{\text{ TM }}\) , a 2D numerical device simulator from SILVACO Inc have been used as a tool to verify the model results.  相似文献   

5.
In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO2–HfO2 (7.5?nm)–Ag/Au nc/C60 embedded HfO2 (6?nm)–HfO2 (30?nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.  相似文献   

6.
The ongoing trend of device dimension miniaturization is attributed to a large extent by the development of several non-conventional device structures among which tunneling field effect transistors (TFETs) have attracted significant research attention due to its inherent characteristics of carrier conduction by built-in tunneling mechanism which in turn mitigates various short channel effects (SCEs). In this work, we have, incorporated the innovative concept of work function engineering by continuously varying the mole fraction in a binary metal alloy gate electrode along the horizontal direction into a double gate tunneling field effect transistor (DG TFET), thereby presenting a new device structure, a work function engineered double gate tunneling field effect transistor (WFEDG TFET). We have presented an explicit analytical surface potential modeling of the proposed WFEDG TFET by the solving the 2-D Poisson’s equation. From the surface potential expression, the electric field has been derived which has been utilized to formulate the expression of drain current by performing rigorous integration on the band-to-band tunneling generation rate over the tunneling region. Based on this analytical modeling, an overall performance comparison of our proposed WFEDG TFET with its normal DG TFET counterpart has been presented in this work to establish the superiority of our proposed structure in terms of surface potential and drain current characteristics. Analytical results have been compared with SILVACO ATLAS device simulator results to validate our present model.  相似文献   

7.
This paper presents an analytical subthreshold model for surface potential and threshold voltage of a triple‐material double‐gate (DG) metal–oxide–semiconductor field‐effect transistor. The model is developed by using a rectangular Gaussian box in the channel depletion region with the required boundary conditions at the source and drain end. The model is used to study the effect of triple‐material gate structure on the electrical performance of the device in terms of changes in potential and electric field. The device immunity against short‐channel effects is evaluated by comparing the relative performance parameters such as drain‐induced barrier lowering, threshold voltage roll‐off, and subthreshold swing with its counterparts in the single‐material DG and double‐material DG metal–oxide–semiconductor field‐effect transistors. The developed surface potential model not only provides device physics insight but is also computationally efficient because of its simple compact form that can be utilized to study and characterize the gate‐engineered devices. Furthermore, the effects of quantum confinement are analyzed with the development of a quantum‐mechanical correction term for threshold voltage. The results obtained from the model are in close agreement with the data extracted from numerical Technology Computer Aided Design device simulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Exact solution of two‐dimensional (2D) Poisson's equation for fully depleted double‐gate silicon‐on‐insulator metal‐oxide‐semiconductor field‐effect transistor is derived using three‐zone Green's function solution technique. Framework consists of consideration of source–drain junction curvature. 2D potential profile obtained forms the basis for estimation of threshold voltage. Temperature dependence of front surface potential distribution, back surface potential distribution and front‐gate threshold voltage are modeled using temperature sensitive parameters. Applying newly developed model, surface potential and threshold voltage sensitivities to gate oxide thickness have been comprehensively investigated. Device simulation is performed using ATLAS 2D (SILVACO, 4701 Patrick Henry Drive, Bldg. Santa Clara, CA 95054 USA) device simulator, and the results obtained are compared with the proposed 2D model. The model results are found to be in good agreement with the simulated data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
On the basis of quasi‐two‐dimensional solution of Poisson's equation, an analytical threshold voltage model for junctionless dual‐material double‐gate (JLDMDG) metal‐oxide‐semiconductor field‐effect transistor (MOSFET) is developed for the first time. The advantages of JLDMDG MOSFET are proved by comparing the central electrostatic potential and electric field distribution with those of junctionless single‐material double‐gate (JLSMDG) MOSFET. The proposed model explicitly shows how the device parameters (such as the silicon thickness, oxide thickness, and doping concentration) affect the threshold voltage. In addition, the variations of threshold voltage roll‐off, drain‐induced barrier lowering (DIBL), and subthreshold swing with the channel length are investigated. It is proved that the device performance for JLDMDG MOSFET can be changed flexibly by adjusting the length ratios of control gate and screen gate. The model is verified by comparing its calculated results with those obtained from three‐dimensional numerical device simulator ISE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a three‐dimensional (3D) model of threshold voltage is presented for dual‐metal quadruple‐gate metal‐oxide‐semiconductor field effect transistors. The 3D channel potential is obtained by solving 3D Laplace's equation using an isomorphic polynomial function. Threshold voltage is defined as the gate voltage, at which the integrated charge (Qinv) at the ‘virtual‐cathode’ reaches to a critical charge Qth. The potential distribution and the threshold voltage are studied with varying the device parameters like gate metal work functions, channel cross‐section, oxide thickness, and gate length ratio. Further, the drain‐induced barrier lowering has also been analyzed for different gate length ratios. The model results are compared with the numerical simulation results obtained from 3D ATLAS device simulation results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.

The tunnel field-effect transistor (TFET) is an ambipolar device that conducts current with the channel in both accumulation and inversion modes. Analytical expressions for the channel potential and current in a TFET with an n-doped channel when operating in the accumulation and inversion modes are proposed herein. The potential model is derived by solving the two-dimensional (2D) Poisson equation using the superposition principle while considering the charges present in the channel due to electron or hole accumulation along with the depletion charges. An expression for the tunneling current corresponding to the maximum tunneling probability is also derived. The tunneling current is obtained by analytically calculating the minimum tunneling length in a TFET when operating in the accumulation or inversion mode. The results of the proposed potential model is compared with technology computer-aided design (TCAD) simulations for TFET with various dimensions, revealing good agreement. The potential and current in an n-type TFET (nTFET) obtained using the proposed models are also analyzed.

  相似文献   

12.
High‐κ gate‐all‐around structure counters the Short Channel Effect (SCEs) mostly providing excellent off‐state performance, whereas high mobility III–V channel ensures better on‐state performance, rendering III–V nanowire GAAFET a potential candidate for replacing the current FinFETs in microchips. In this paper, a 2D simulator for the III–V GAAFET based on self‐consistent solution of Schrodinger–Poisson equation is proposed. Using this simulator, capacitance–voltage profile and threshold voltage are characterized, which reveal that gate dielectric constant (κ) and oxide thickness do not affect threshold voltage significantly at lower channel doping. Moreover, change in alloy composition of InxGa1‐xAs, channel doping, and cross‐sectional area has trivial effects on the inversion capacitance although threshold voltage can be shifted by the former two. Although, channel material also affects the threshold voltage, most sharp change in threshold voltage is observed with change in fin width of the channel (0.005 V/nm for above 10 nm fin width and 0.064 V/nm for sub‐10 nm fin width). Simulation suggests that for lower channel doping below 1023 m−3, fin width variation affects the threshold voltage most. Whereas when the doping is higher than 1023 m−3, both the thickness and dielectric constant of the oxide material have strong effects on threshold voltage (0.05 V/nm oxide thickness and 0.01 V/per unit change in κ). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Junctionless transistors, which do not have any pn junction in the source-channel-drain path have become an attractive candidate in sub-20 nm regime. They have homogeneous and uniform doping in source-channel-drain region. Despite some similarities with conventional MOSFETs, the charge-potential relationship is quite different in a junctionless transistor, due to its different operational principle. In this report, models for potential and drain current are formulated for shorter channel symmetric double-gate junctionless transistor (DGJLT). The potential model is derived from two dimensional Poisson’s equation using “variable separation technique”. The developed model captures the physics in all regions of device operation i.e., depletion to accumulation region without any fitting parameter. The model is valid for a range of channel doping concentrations, channel thickness and channel length. Threshold voltage and drain-induced barrier lowering values are extracted from the potential model. The model is in good agreement with professional TCAD simulation results.  相似文献   

14.
A modified lateral‐diffusion metal–oxide–semiconductor (MLDMOS) device with improved electrostatic discharge (ESD) protection performance is proposed for high‐voltage ESD protection. In comparison with the traditional LDMOS and the LDMOS with an embedded silicon‐controlled rectifier (LDMOS‐SCR), the proposed device has better ESD robustness and higher holding voltage. By optimizing key parameters, such as the spacing between the drain and the poly gate, the effective channel length, and the number of fingers, the MLDMOS can achieve a maximum failure current over 80 mA/µm, which is larger than that of LDMOS‐SCR. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
On the basis of the exact solution of Poisson's equation and Pao–Sah double integral for long‐channel bulk MOSFETs, a continuous and analytic drain current model for the undoped gate stack (GS) surrounding‐gate (SRG) metal–oxide–semiconductor field‐effect transistor (MOSFET) including positive or negative interface fixed charges near the drain junction is presented. Considering the effect of the interface fixed charges on the flat‐band voltage and the electron mobility, the model, which is expressed with the surface and body center potentials evaluated at the source and drain ends, describes the drain current from linear region to saturation region through a single continuous expression. It is found that the surface and body center potentials are increased/decreased in the case of positive/negative interface fixed charges, respectively, and the positive/negative interface fixed charges can decrease/increase the drain current. The model agrees well with the 3D numerical simulations and can be efficiently used to explore the effects of interface fixed charges on the drain current of the gate stack surrounding‐gate MOSFETs of the charge‐trapped memory device. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A comprehensive study of the intrinsic reliability of a 1.4-nm (equivalent oxide thickness) JVD Si3N4 gate dielectric subjected to constant-voltage stress has been conducted. The stress leads to the generation of defects in the dielectric. As a result, the degradation in the threshold voltage, subthreshold swing, gate leakage current, and channel mobility has been observed. The change in each of these parameters as a function of stress time and stress voltage is studied. The data are used to project the drift of a MOSFET incorporating JVD nitride at a low operating voltage of 1.2 V in 10 years. Based on these projections, we conclude that the increase in the Si3N4 gate dielectric leakage current does not pose a serious threat to device performance. Instead, the degradation in the threshold voltage and channel mobility can become the factor limiting the device reliability  相似文献   

17.
A distinct materials combination is presented for tunnel field-effect transistors (TFETs): gallium arsenide phosphide (GaAsP) as a wider-bandgap material in the drain and channel regions with indium gallium arsenide (InGaAs) as a narrow-bandgap material for the source region. The introduction of this novel materials combination greatly improves the ON-state current, OFF-state current, ambipolar behavior, threshold voltage, and subthreshold slope compared with other group III–V ternary heterojunction TFETs. In GaAsP–InGaAs TFETs, the ambipolar current remains equal to the OFF-state current. This paper explores the potential of the proposed device for ultralow-power high-performance applications.  相似文献   

18.
Two important new sources of fluctuations in nanoscaled MOSFETs are the polysilicon gates and the introduction of high-κ gate dielectrics. Using a 3D parallel drift-diffusion device simulator, we study the influence of the polycrystal grains in polysilicon and in the high-κ dielectric on the device threshold for MOSFETs with gate lengths of 80 and 25 nm. We model the surface potential pinning at the grain boundaries in polysilicon through the inclusion of an interfacial charge between the grains. The grains in the high-κ gate dielectric are distinguished by different dielectric constants. We have found that the largest impact of the polysilicon grain boundary in the 80 nm gate length MOSFET occurs when it is positioned perpendicular to the current flow. At low drain voltage the maximum impact occurs when the grain boundary is close to the middle of the gate. At high drain voltage the impact is stronger when the boundary is moved toward the source end of the channel. Similar behaviour is observed in the 25 nm gate length MOSFET.  相似文献   

19.
In this paper, an analytical short-channel threshold voltage model is presented for double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs. The threshold voltage model is based on the “virtual cathode” concept which is determined by the two-dimensional (2D) channel potential of the device. The channel potential has been determined by solving 2D Poisson’s equation with suitable boundary conditions in both the strained-Si layer and relaxed Si1?x Ge x layer. The effects of various device parameters like Ge mole fraction, Si film thickness, SiGe thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been estimated. The validity of the present 2D analytical model is verified by using ATLAS?, a 2D device simulator from Silvaco.  相似文献   

20.

We propose a novel deep gate lateral double diffused metal-oxide-semiconductor (LDMOS) field-effect transistor in partial silicon-on-insulator (PSOI) technology for achieving high breakdown voltage and reduced power dissipation. In the proposed device, an N+ well is inserted in the buried oxide under the drain region. By optimizing the N+ well and the lateral distance between the buried oxide and the left side of the device, the electric field is modified. Therefore, the breakdown voltage improves. Also, the PSOI technology used in the proposed structure has a significant effect on reducing the lattice temperature. Our simulation results show that the proposed structure improves the breakdown voltage by about 67.5% and reduces the specific on-resistance by about 20% in comparison with a conventional LDMOS.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号