首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we simulate the coupled physics describing a magnetic resonance imaging (MRI) scanner by using a higher‐order finite element discretisation and a Newton‐Raphson algorithm. To apply the latter, a linearisation of the nonlinear system of equations is necessary, and we consider two alternative approaches. In the first approach, ie, the nonlinear approach, there is no approximation from a physical standpoint, and the linearisation is performed about the current solution. In the second approach, ie, the linearised approach, we realise that the MRI problem can be described by small dynamic fluctuations about a dominant static solution and linearise about the latter. The linearised approach permits solutions in the frequency domain and provides a computationally efficient way to solve this challenging problem, as it allows the tangent stiffness matrix to be inverted independently of time or frequency. We focus on transient solutions to the coupled system of equations and address the following two important questions: (i) how good is the agreement between the computationally efficient linearised approach compared with the intensive nonlinear approach and (ii) over what range of MRI operating conditions can the linearised approach be expected to provide acceptable results for outputs of interest in an industrial context for MRI scanner design? We include a set of academic and industrially relevant examples to benchmark and illustrate our approach.  相似文献   

2.
Transient magnetic fields are generated by the gradient coils in an magnetic resonance imaging (MRI) scanner and induce eddy currents in their conducting components, which lead to vibrations, imaging artefacts, noise, and the dissipation of heat. Heat dissipation can boil off the helium used to cool the super conducting magnets and, if left unchecked, will lead to a magnet quench. Understanding the mechanisms involved in the generation of these vibrations, and the heat being deposited in the cryostat, are key for a successful MRI scanner design. This requires the solution of a coupled physics magneto-mechanical problem, which will be addressed in this work. A novel computational methodology is proposed for the accurate simulation of the magneto-mechanical problem using a Lagrangian approach, which, with a particular choice of linearisation, leads to a staggered scheme. This is discretised by high-order finite elements leading to accurate solutions. We demonstrate the success of our scheme by applying it to realistic MRI scanner configurations.  相似文献   

3.
As part of the ongoing research within the field of computational analysis for the coupled electro‐magneto‐mechanical response of smart materials, the problem of linearised electrostriction is revisited and analysed for the first time using the framework of hp‐finite elements. The governing equations modelling the physics of the dielectric are suitably modified by introducing a new total Cauchy stress tensor (A. Dorfmann and R.W. Ogden. Nonlinear electroelasticity. Acta Mechanica, 174:167–183, 2005), which includes the electrostrictive effect and a staggered partitioned scheme for the numerical solution of the coupling phenomena. With the purpose of benchmarking numerical results, the problem of an infinite electrostrictive plate with a circular/elliptical dielectric insert is revisited. The presented analytical solution is based on the theoretical framework for two‐dimensional electrostriction proposed by Knops (R.J. Knops. Two‐dimensional electrostriction. Quarterly Journal of Mechanics and Applied Mathematics, 16:377–388, 1963) and uses classical techniques of complex variable analysis. Our presentation, to the best of our knowledge, provides the first correct closed form expression for the solution to the infinite electrostrictive plate with a circular/elliptical dielectric insert, correcting the errors made in previous presentations of this problem. We use this analytical solution to assess the accuracy, efficiency and robustness of the hp‐formulation in the case of nearly incompressible electrostrictive materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper the formulation of an electric–mechanical beam‐to‐beam contact element is presented. Beams with circular cross‐sections are assumed to get in contact in a point‐wise manner and with clean metallic surfaces. The voltage distribution is influenced by the contact mechanics, since the current flow is constricted to small contacting spots. Therefore, the solution is governed by the contacting areas and hence by the contact forces. As a consequence the problem is semi‐coupled with the mechanical field influencing the electric one. The electric–mechanical contact constraints are enforced with the penalty method within the finite element technique. The virtual work equations for the mechanical and electric fields are written and consistently linearized to achieve a good level of computational efficiency with the finite element method. The set of equations is solved with a monolithic approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The purpose of the present work is to model and to simulate the coupling between the electric and mechanical fields. A new finite element approach is proposed to model strong electro‐mechanical coupling in micro‐structures with capacitive effect. The proposed approach is based on a monolithic formulation: the electric and the mechanical fields are solved simultaneously in the same formulation. This method provides a tangent stiffness matrix for the total coupled problem which allows to determine accurately the pull‐in voltage and the natural frequency of electro‐mechanical systems such as MEMs. To illustrate the methodology results are shown for the analysis of a micro‐bridge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Shape‐memory polymers (SMPs) belong to a class of smart materials that have shown promise for a wide range of applications. They are characterized by their ability to maintain a temporary deformed shape and return to an original parent permanent shape. In this paper, we consider the coupled photomechanical behavior of light activated shape‐memory polymers (LASMPs), focusing on the numerical aspects for finite element simulations at the engineering scale. The photomechanical continuum framework is summarized, and some specific constitutive equations for LASMPs are described. Numerical implementation of the multiphysics governing partial differential equations takes the form of a user defined element subroutine within the commercial software package ABAQUS . We verify our two‐dimensional and three‐dimensional finite element procedure for multiple analytically tractable cases. To show the robustness of the numerical implementation, simulations are performed under various geometries and complex photomechanical loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a general framework for the macroscopic, continuum‐based formulation and numerical implementation of dissipative functional materials with electro‐magneto‐mechanical couplings based on incremental variational principles. We focus on quasi‐static problems, where mechanical inertia effects and time‐dependent electro‐magnetic couplings are a priori neglected and a time‐dependence enters the formulation only through a possible rate‐dependent dissipative material response. The underlying variational structure of non‐reversible coupled processes is related to a canonical constitutive modeling approach, often addressed to so‐called standard dissipative materials. It is shown to have enormous consequences with respect to all aspects of the continuum‐based modeling in macroscopic electro‐magneto‐mechanics. At first, the local constitutive modeling of the coupled dissipative response, i.e. stress, electric and magnetic fields versus strain, electric displacement and magnetic induction, is shown to be variational based, governed by incremental minimization and saddle‐point principles. Next, the implications on the formulation of boundary‐value problems are addressed, which appear in energy‐based formulations as minimization principles and in enthalpy‐based formulations in the form of saddle‐point principles. Furthermore, the material stability of dissipative electro‐magneto‐mechanics on the macroscopic level is defined based on the convexity/concavity of incremental potentials. We provide a comprehensive outline of alternative variational structures and discuss details of their computational implementation, such as formulation of constitutive update algorithms and finite element solvers. From the viewpoint of constitutive modeling, including the understanding of the stability in coupled electro‐magneto‐mechanics, an energy‐based formulation is shown to be the canonical setting. From the viewpoint of the computational convenience, an enthalpy‐based formulation is the most convenient setting. A numerical investigation of a multiferroic composite demonstrates perspectives of the proposed framework with regard to the future design of new functional materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a coupling method between a discrete element code CeaMka3D and a finite element code Sem. The coupling is based on a least‐squares method, which adds terms of forces to finite element code and imposes the velocity at coupling particles. For each coupling face, a small linear system with a constant matrix is solved. This method remains conservative in energy and shows good results in applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the formulation and application of a multiscale methodology that couples three domains using a finite element framework. The proposed method efficiently models atomistic systems by decomposing the system into continuum, bridging, and atomistic domains. The atomistic and bridging domains are solved using a combined finite element–molecular mechanics simulation where the system is discretized into atom/nodal centric elements based on the atomic scale finite element method. Coupling between the atomistic domain and continuum domain is performed through the bridging cells, which contain locally formulated atoms whose displacements are mapped to the nodes of the bridging cell elements. The method implements a temperature‐dependent potential for finite temperature simulations. Validation and demonstration of the methodology are provided through three case studies: displacement in a one‐dimensional chain, stress around nanoscale voids, and fracture. From these studies differences between multiscale and fully atomistic simulations were very small with the simulation time of the proposed methodology being approximately a tenth of the time of the fully atomistic model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new arbitrary Lagrangian–Eulerian (ALE) finite element formulation for finite strain plasticity in non‐linear solid mechanics. We consider the models of finite strain plasticity defined by the multiplicative decomposition of the deformation gradient in an elastic and a plastic part ( F = F e F p), with the stresses given by a hyperelastic relation. In contrast with more classical ALE approaches based on plastic models of the hypoelastic type, the ALE formulation presented herein considers the direct interpolation of the motion of the material with respect to the reference mesh together with the motion of the spatial mesh with respect to this same reference mesh. This aspect is shown to be crucial for a simple treatment of the advection of the plastic internal variables and dynamic variables. In fact, this advection is carried out exactly through a particle tracking in the reference mesh, a calculation that can be accomplished very efficiently with the use of the connectivity graph of the fixed reference mesh. A staggered scheme defined by three steps (the smoothing, the advection and the Lagrangian steps) leads to an efficient method for the solution of the resulting equations. We present several representative numerical simulations that illustrate the performance of the newly proposed methods. Both quasi‐static and dynamic conditions are considered in these model examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions, where the finite‐dimensional space(s) employed consist of piecewise polynomials enriched with residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method (TLFEM) is described and its application to the Navier–Stokes equation is displayed. Numerical solutions employing the TLFEM are presented for three benchmark problems. We compare the numerical solutions using the TLFEM with the numerical solutions using a stabilized method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space‐time coupling matrices are diagonalizable over for r ?100, and this means that the time‐coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG‐in‐time methodology, for the first time, to second‐order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high‐order (up to degree 7) temporal and spatio‐temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.  相似文献   

14.
In transient finite element analysis, reducing the time‐step size improves the accuracy of the solution. However, a lower bound to the time‐step size exists, below which the solution may exhibit spatial oscillations at the initial stages of the analysis. This numerical ‘shock’ problem may lead to accumulated errors in coupled analyses. To satisfy the non‐oscillatory criterion, a novel analytical approach is presented in this paper to obtain the time‐step constraints using the θ‐method for the transient coupled analysis, including both heat conduction–convection and coupled consolidation analyses. The expressions of the minimum time‐step size for heat conduction–convection problems with both linear and quadratic elements reduce to those applicable to heat conduction problems if the effect of heat convection is not taken into account. For coupled consolidation analysis, time‐step constraints are obtained for three different types of elements, and the one for composite elements matches that in the literature. Finally, recommendations on how to handle the numerical ‘shock’ issues are suggested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This work introduces a novel, mortar‐based coupling scheme for electrode‐electrolyte interfaces in 3‐dimensional finite element models for lithium‐ion cells and similar electrochemical systems. The coupling scheme incorporates the widely applied Butler‐Volmer charge transfer kinetics, but conceptually also works for other interface equations. Unlike conventional approaches, the coupling scheme allows flexible mesh generation for the electrode and electrolyte phases with nonmatching meshes at electrode‐electrolyte interfaces. As a result, the desired spatial mesh resolution in each phase and the resulting computational effort can be easily controlled, leading to improved efficiency. All governing equations are solved in a monolithic fashion as a holistic, unified system of linear equations for computational robustness and performance reasons. Consistency and optimal convergence behavior of the coupling scheme are demonstrated in elementary numerical tests, and the discharge of two different realistic lithium‐ion cells, each consisting of an anode, a cathode, and an electrolyte, is also simulated. One of the two cells involves about 1.35 million degrees of freedom and very complex microstructural geometries obtained from X‐ray tomography data. For validation purposes, characteristic numerical results from the literature are reproduced, and the coupling scheme is shown to require considerably fewer degrees of freedom than a standard discretization with matching interface meshes to achieve a similar level of accuracy.  相似文献   

16.
A non‐iterative, finite element‐based inverse method for estimating surface heat flux histories on thermally conducting bodies is developed. The technique, which accommodates both linear and non‐linear problems, and which sequentially minimizes the least squares error norm between corresponding sets of measured and computed temperatures, takes advantage of the linearity between computed temperatures and the instantaneous surface heat flux distribution. Explicit minimization of the instantaneous error norm thus leads to a linear system, i.e. a matrix normal equation, in the current set of nodal surface fluxes. The technique is first validated against a simple analytical quenching model. Simulated low‐noise measurements, generated using the analytical model, lead to heat transfer coefficient estimates that are within 1% of actual values. Simulated high‐noise measurements lead to h estimates that oscillate about the low‐noise solution. Extensions of the present method, designed to smooth oscillatory solutions, and based on future time steps or regularization, are briefly described. The method's ability to resolve highly transient, early‐time heat transfer is also examined; it is found that time resolution decreases linearly with distance to the nearest subsurface measurement site. Once validated, the technique is used to investigate surface heat transfer during experimental quenching of cylinders. Comparison with an earlier inverse analysis of a similar experiment shows that the present method provides solutions that are fully consistent with the earlier results. Although the technique is illustrated using a simple one‐dimensional example, the method can be readily extended to multidimensional problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
An improved hybrid particle‐finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized co‐ordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three‐dimensional simulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A number of coupled particle–element and hybrid particle–element methods have been developed for the simulation of hypervelocity impact problems to avoid certain disadvantages associated with the use of pure continuum‐based or pure particle‐based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particle entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The computation of the resonant frequencies for closed cavities is not a trivial task: Multi‐materials and sharp corners all give rise to highly singular eigenfunctions. However, an approach using hp‐finite elements is well suited to such problems and, with the correct combination of h‐ and p‐refinements, it yields the theoretically predicated exponential rates of convergence. In this paper, we present a novel approach to the solution of axisymmetric cavity problems which uses a hierarchic H1 and H (curl) conforming finite element basis. A selection of numerical examples is included and these demonstrate that the exponential rates of convergence are achieved in practice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a coupling technique is developed for the combination of the wavelet‐Galerkin method (WGM) with the finite element method (FEM). In this coupled method, the WGM and FEM are respectively used in different sub‐domains. The WGM sub‐domain and the FEM sub‐domain are connected by a transition region that is described by B‐spline basis functions. The basis functions of WGM and FEM are modified in the transition region to ensure the basic polynomial reconstruction condition and the compatibility of displacements and their gradients. In addition, the elements of FEM and WGM are not necessary to conform to the transition region. This newly developed coupled method is applied to the stress analysis of 2D and 3D elasticity problems in order to investigate its performance and study parameters. Numerical results show that the present coupled method is accurate and stable. The new method has a promising potential for practical applications and can be easily extended for coupling of other numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号