首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of starch particle size and leached amylose on the viscosity of rice starch dispersions and changes of short-range structure and amylose content in starch granules of different rice varieties during heating were investigated. It was found that starch granule swelling increased rice starch dispersion viscosity during heating. The viscosities of the starch dispersions during heating were principally dependent on granular volume fraction and independent of starch variety. A distinct correlation between the amount of leached amylose and swelling of starch granules was also found. High initial amylose concentrations in starch granules reduced swelling during heating, thereby reducing rice dispersion viscosities. Fourier-transform IR spectroscopy indicated that the loss of short-range order was significant when the temperature reached the pasting onset temperature. The short-range order of waxy and medium grain rice starches was higher than that of long grain rice starches before gelatinization. The loss of order of waxy and medium grain rice starches was greater than that of long grain rice starches during heating, which was due to the presence of amylose, restraining the swelling and disruption of starch granules during heating.  相似文献   

2.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

3.
L. N. Lai    A. A. Karim    M. H. Norziah    C. C. Seow 《Journal of food science》2004,69(4):FCT249-FCT25
ABSTRACT: Using a Rapid Visco Analyzer (RVA), it was revealed that 2 alkalizing agents (Na2CO3 and NaOH) had a far larger effect on pasting properties of nonwaxy starches (wheat, corn, rice) compared with their effect on waxy starches (waxy corn and waxy rice). It was hypothesized that the alkalizing agents have a greater propensity to attack the amorphous regions of the nonwaxy starch granules, thereby causing increased leaching of amylose molecules and possibly also some hydrolysis of starch chains. As a result, the RVA pasting profile of a nonwaxy starch, in the presence of alkali, was drastically altered to one that more closely resembled that of its waxy counterpart without added alkali.  相似文献   

4.
The viscosities of five Thai rice starches with different amylose contents were measured by rotational rheometry and using a Rapid Visco Analyser. The viscosity response was interpreted in terms of the swelling volume and the structural properties of the granule determined by calorimetry, infrared spectroscopy and X‐ray diffraction. It was found that the waxy rice starches had a higher swelling volume resulting in a higher viscosity than the other rice classes. Critical concentrations for close packing, identified from the concentration where the flow behaviour departs from Newtonian, were 2.5%, 1.5% and 1.10% for the high amylose, medium amylose and waxy rice starch, respectively. An exception to this was a commercial high amylose starch that had a critical concentration similar to the medium amylose category. This was ex‐plained in terms of a relatively higher loss of short‐range molecular order on gelatini‐sation as shown by FTIR for this starch. Medium amylose Jasmine rice starch, extracted from rice that had been aged for 5 months, showed differences in granule size, crystallinity, pasting profile and enthalpy of gelatinisation when compared with the results for starch extracted from freshly harvested rice. This was provisionally interpreted in terms of granule damage during the extraction process, though more work would be required to confirm this interpretation.  相似文献   

5.
Presently, rice cultivars are categorized according to amylose content into three groups: low, medium and high amylose content cultivars. The correlation of amylose content with gelatinization properties, retrogradation, and pasting properties of eleven cultivars of Thai rice were investigated. Rice flour was prepared from milled rice by the wet grinding process. Onset (To), peak (Tp) and conclusion (Tc) temperatures of gelatinization, (determined by DSC) were found to be highly positively correlated with amylose levels. This correlation could be used for prediction of amylose content of rice flour. Low amylose starch could also be characterized by low degree of retrogradation (%R). The data obtained from RVA‐viscograms (peak viscosity, breakdown, setback, and pasting temperature) can be used only for characterization of the group of low amylose starches (waxy rice). It was demonstrated that low amylose rice starch provided the highest peak viscosity and breakdown and the lowest setback and pasting temperature among the groups investigated.  相似文献   

6.
Endosperm starch isolated from an amylose‐free waxy mutant hull‐less barley line, Shikoku Hadaka 97, had an amylose content of 0.3% and higher swelling power than ordinary waxy barley cultivars/lines with amylose contents of 2.2—6.5%. A highly significant correlation was observed between amylose content and swelling power among waxy barley starches. No clear differences were detected in the chain‐length distribution profiles or thermal properties between the amylose‐free starch and ordinary waxy starch. The chain‐length distribution profile of waxy barley starch was slightly different from that of normal barley starch. Gelatinization temperatures and gelatinization enthalpy of waxy barley starch were higher than those of normal barley starch. Significant correlations were observed between amylose content and thermal properties of starch samples analyzed. Waxy barley starch stained with a concentrated iodine‐potassium iodide solution showed a ghost‐like appearance.  相似文献   

7.
大米淀粉结构与特性研究进展   总被引:1,自引:0,他引:1  
大米淀粉是主要的谷物淀粉之一,具有一些独特的结构及物化特征。本文主要从淀粉颗粒结构、生长环结构、Blocklets小体、层状结构、结晶结构及链结构等多尺度结构层次和凝胶化、糊化、回生及消化等特性方面,对大米淀粉结构和物化特性进行了全面的综述,并阐述了大米淀粉不同层级结构对其特性的影响,同时介绍了大米淀粉的主要制备方法与组成成分及其对大米淀粉特性的影响,以期为大米淀粉的研究与开发提供借鉴。  相似文献   

8.
本文利用Brabender淀粉粘度仪,详细研究了糯型与非糯型大米样品在特殊情况下的糊化特性,并证明有明显差别。在糊化特性曲线上发现糯米型最高粘滞峰值低于籼米型。这两种类型大米的最高粘滞峰值与它们的酶含量成负相关,与直链淀粉含量和糊化温度成正相关。  相似文献   

9.
稻米淀粉的研究进展   总被引:4,自引:0,他引:4  
李兆丰  顾正彪  洪雁 《食品科学》2004,25(12):184-188
本文详细介绍了稻米淀粉的提纯、组成与结构,并对稻米淀粉的物理化学性质,包括淀粉的糊化和老化性质、吸水率、溶解度以及膨润力等进行了较全面的综述;同时,比较了籼米淀粉、粳米淀粉和糯米淀粉在组成、结构和物理化学性质上的差异。  相似文献   

10.
To investigate the effects of starch characteristics on the quality of noodle making, white salted noodles (WSN) made from reconstituted flours, in which the wheat starch was substituted by different cereal starches, including waxy and non-waxy rice starches, waxy wheat starch and waxy corn starch, were prepared. The rheological properties of raw WSN were mainly influenced by the size of starch granules, where the small starch granules, such as for rice starches, exhibited high amounts of water absorption during dough preparation and a dense packing of starch granules inside a thin gluten-strand network. The rheological properties of cooked WSN were mainly dominated by the amylose content and fine structure of the amylopectin, which resulted in the differences in water absorption and cooking time required for cooked WSN.  相似文献   

11.
Starch structural mutants showing abnormal endosperm characteristics have been used for investigating the effects of the mutation on structure and physicochemical properties of starches. Inbred lines of barley cultivars ‘Shikoku Hadaka 97’ and ‘Glacier AC38’ were used to investigate the impact of amo1 and waxy genes on starch properties. The amo1 type starch had high apparent amylose content and low starch content. The amo1+waxy type starch contained very little amylose. The content of long chains of amylopectin as detected with high‐performance size‐exclusion chromatography (HPSEC) was decreased, and that of amylopectin chains with the degree of polymerization (DP) of 12‐36 was increased in amo1 and amo1+waxy type starches. The amo1 and amo1+waxy type starches exhibited high gelatinization temperatures and low gelatinization enthalpies.  相似文献   

12.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

13.
以大黄米、糯米、糯玉米淀粉为原料,通过快速黏度分析仪、流变仪、差示扫描量热仪以及低场强核磁研究不同添加量的(2%、6%和10%)麦芽糖对糯性谷物淀粉糊化和流变性质的影响。结果表明:麦芽糖能够提高3 种糯性谷物淀粉的成糊温度,显著降低3 种淀粉的峰值黏度、终值黏度和回生值;随着麦芽糖添加量的增加,3 种淀粉糊的剪切应力逐渐降低,稠度系数降低,体系仍为假塑性流体,相比于大黄米淀粉和糯米淀粉,10%的麦芽糖对糯玉米淀粉的影响更大,稠度系数由32.546 Pa·sn降至4.801 Pa·sn,剪切变稀现象更为明显;热力学研究显示添加麦芽糖均能增加3 种糯性谷物淀粉的糊化温度和糊化焓值,且随着麦芽糖添加量的增加而升高;通过低场强核磁分析可知,添加麦芽糖使整个体系结合水与不易流动水含量增加,自由水含量减少,进一步解释添加麦芽糖能够降低体系黏度,增加淀粉糊化温度;本研究可为麦芽糖在糯性谷物食品中的应用提供指导。  相似文献   

14.
In this work the contribution of molecular structures to the swelling behavior of rice starches was investigated. Rice starches with different amylose contents (0 ‐ 23.4 %) were gelatinized to various degrees (approximately 10, 20, and 50 %) with 13 M aqueous LiCl, and the surface‐gelatinized starch and ungelatinized remaining granules were separated and characterized. The native starches were heated at 85 or 95°C for 30 min in excess water, and the granule envelope remnants were recovered by centrifugation for further characterization. The remaining granules after surface removal exhibited a lower gelatinization temperature and enthalpy, and swelled to a greater extent upon heating than the native counterpart. The amylopectin molecules in granule envelope remnants obtained at 95°C had larger Mw (weight‐average molar mass) and Rz (z‐average gyration radius) than those in remnants obtained at 85°C. The chemical composition and structure of granule envelope remnants obtained at 85°C were different from those obtained at 95°C for the same rice starch cultivar. The results imply that starch periphery may not be responsible for maintaining starch granule integrity during gelatinization and swelling. It is proposed that the composition and structure of the granule envelope remnant that maintains granule integrity are not constant but dynamic. The formation of a semi‐permeable membrane‐like surface structure during gelatinization and swelling is proposed to be a result of molecule entanglement after gelatinization.  相似文献   

15.
Amylose content is an important indicator to determine the utility of raw milled rice. Indica type rice with high amylose content is usually used for manufacturing rice noodles, while Japonica rice may be mixed partially to adjust the noodle texture. The effect of amylose and rice type on dynamic viscoelasticity of rice starch gel was investigated using a model starch composite in this study. The information will be helpful to control and obtain the required noodle texture by combination of different rice types. The results show that nonwaxy Indica and waxy Japonica rice starches in a composite mixture were incompatible and demonstrated their individual gelatinization behavior during heating. High amylose starch showed higher moduli and lower loss tangent values, as well as higher retrogradation rate. The starch gel made from Japonica rice starch showed a slow retrogradation rate even containing a similar amount of amylose to Indica starch. The storage modulus of the gel made from higher amylose rice was shown to be more independent of frequency. Not only amylose content but also chain length distribution in amylopectin affected the dynamic viscoelasticity of rice gel. Japonica rice starch, with fewer super-long chains in amylopectin, retrograded slower after gelatinization than Indica rice, thus the paste is too sticky for production of rice noodles.  相似文献   

16.
The effect of white sauce ingredients and increased cooking time at 90 °C on the degree of gelatinization of corn, waxy corn, rice, potato and modified waxy corn starches was studied. The changes in pasting properties, linear viscoelastic properties, and microstructure were determined. In all the native starches in water, a longer cooking time at 90 °C caused greater starch granule swelling and more leaching of solubilized starch polymers into the intergranular space. These effects were more noticeable in the waxy corn and potato starches. The potato starch was the most affected, with complete disruption of the starch granules after 300 s at 90 °C. The microstructural changes which transformed a system characterized by starch granules dispersed in a continuous phase (amylose/amylopectin matrix) into a system with an increase in the continuous phase and a decrease in starch granules were associated with a decrease in system viscoelasticity. The elastic moduli were higher in the sauce than in the starch in water system. However, with the exception of potato starch, the white sauce showed lower viscoelasticity than the starch in water system. The white sauce ingredients decreased the effect of cooking time on the starch gelatinization process, particularly in potato starch.  相似文献   

17.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

18.
Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X‐ray diffraction analysis revealed that bracken starch exhibited a typical C‐type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch.  相似文献   

19.
Starches from two crops of 7 intermediate-amylose and 7 waxy milled rices differing in eating qualities were characterized. Among the nonwaxy rice starches, those of softer cooked rice had gelatinization temperature of ≥ 70°C, medium to soft gel (110 mg/2 ml) consistency, low alkali viscograph peak viscosity, and greater Amylograph breakdown and lower Amylograph setback and consistency than low gelatinization temperature starches. Among waxy starches, gels of low gelatinization temperature samples had greater freeze-thaw stability than gels of high gelatinization temperature samples. A 12% paste gave better differentiation in Amylograph viscosity than 10% paste of intermediate-amylose milled rice. Water-extractable substances that suppressed the Amylograph viscosity of milled waxy rices were lipids and polysaccharides.  相似文献   

20.
Waxy wheats possess unique starch functional properties that may be useful in specific end‐uses. To assess the physicochemical, thermal, and pasting properties, starches from seven waxy genotypes originating from two wheat classes, tetraploid durum and hexaploid hard red spring (HRS), were evaluated and compared with their counterpart non‐waxy wild types. The amylose content ranged from 2.3% to 2.6% in waxy durum lines, compared to 29.2% in normal durum control, and 2.1% to 2.4% in waxy HRS, compared with 26.0% in normal HRS control. Significant differences in the degree of crystallinity were observed between the waxy and control starches, despite similar A‐type X‐ray patterns, although differences between the two wheat classes were non‐significant. Both, control and waxy starches displayed an X‐ray peak corresponding to the amylose‐lipid complex, but the intensity of the peak was markedly lower in the waxy starches. The waxy durum starches exhibited the highest transition temperatures as measured by Differential Scanning Calorimetry (DSC), whereas, the enthalpy of gelatinization of most waxy genotypes was statistically higher than that of the controls. All waxy starches displayed high peak viscosity, high breakdown, and low setback profile as measured by the Rapid Visco Analyser (RVA). Texture analysis of RVA gels revealed significant differences between waxy and non‐waxy wheats, as well as between waxy tetraploid and hexaploid wheats, confirming that the nature and class of wheat starch would play a significant role when using waxy wheat blends in different wheat‐based products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号