首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
颗粒增强铝基复合材料(PRAMCs)具有高比强度、高比刚度、高弹性模量、高耐磨性、尺寸稳定性好、成本低等优点。介绍了增强颗粒的选择原则、特性及其在基体中的作用,几种典型颗粒增强铝基复合材料的发展状况、强化机理及其常用的制备方法,并列举了典型制备工艺的优点及其应用范围,国内外相关领域内的研究成果和应用状况,最后指出颗粒增强铝基复合材料是当前研究和发展的重要方向之一,具有广阔的应用前景。  相似文献   

2.
铸造法制备颗粒增强铝基复合材料   总被引:6,自引:0,他引:6  
铸造法是目前最主要的一种制备颗粒增强铝基复合材料的方法。叙述了几类制备颗粒增强铝基复合材料的铸造方法,并介绍了此种工艺方法应注意的技术问题及解决方法,提出了用铸造法制备颗粒增强铝基复合材料的原则。  相似文献   

3.
向铸铝ADC12熔体中添加脱水后的硫酸铝铵,反应分解的Al2O3原位生成颗粒增强铝基复合材料,该方法既可节约成本,同时由NH4Al(SO4)2分解的SO3对熔体具有精炼作用.SEM观察表明,Al2O3颗粒在铝基体中细小弥散分布,形成球形、不团聚的增强体颗粒.与基材相比,该复合材料的耐磨性明显提高;拉伸试验显示,复合材料的抗拉强度和延伸率有所降低.  相似文献   

4.
陶瓷颗粒增强铁基复合材料制备技术综述   总被引:1,自引:0,他引:1  
介绍了常用的陶瓷增强颗粒及其物理、力学性能,重点综述了陶瓷颗粒增强铁基复合材料典型制备技术的优缺点及应用现状。针对陶瓷颗粒增强铁基复合材料错综复杂的影响因素,指出将现有制备技术与计算机模拟技术相结合是今后陶瓷颗粒增强铁基复合材料制备技术的一个重要发展方向。  相似文献   

5.
介绍了金属基陶瓷颗粒增强复合材料(metal matrix ceramic reinforced cornposites)的基体与陶瓷增强相的选择,同时指出如何有效地改善金属基体与陶瓷颗粒增强相之间的浸湿性问题.总结了烧结前期复合坯体的一些主要制备方法.又介绍了金属基陶瓷复合材料(MMC)的烧结工艺,重点介绍了通电烧结,比较了各新工艺的基本原理和优缺点,最后对金属基陶瓷颗粒增强复合材料进行了技术展望.  相似文献   

6.
碳化硅颗粒增强铝基复合材料的制备工艺进展   总被引:2,自引:0,他引:2  
综述了碳化硅颗粒增强铝基复合材料(SiCp/Al基复合材料)的研究进展,重点阐述了SiCp/Al基复合材料的主要制备工艺,并在此基础上展望了其相关及后续工艺的研究方向.  相似文献   

7.
在综述当前原位颗粒增强镁基复合材料的基础上,提出了采用Mg-TiO2-B2O3体系热爆的方法制备镁基复合材料.热力学分析表明,在镁的加入量小于70%的情况下,Mg-TiO2-B2O3体系的热爆反应可以在镁液的冶炼温度下自发进行.对热爆产物及复合材料的SEM和EDS分析表明,Mg-B2O3-TiO2预制块在镁液中发生热爆反应,同时原位合成了细小、圆形的陶瓷颗粒.5%Mg-B2O3-TiO2体系制备的镁基复合材料的拉伸强度和硬度分别比基体提高了约26%和32%.  相似文献   

8.
纳米SiC颗粒增强2024铝基复合材料的力学性能研究   总被引:4,自引:0,他引:4  
采用粉末冶金法制备了1%(体积分数)纳米SiC颗粒增强2024铝基复合材料,并研究了其力学性能。实验结果表明,1%纳米SiC颗粒增强2024铝基复合材料具有优良的室温力学性能,并且在200℃时表现了较好的高温性能,在315℃时强度下降。研究表明,纳米SiC可以增加增强粒子的表面积,减小增强粒子的颗粒间距,使大量弥散分布的纳米SiC颗粒起到钉扎位错的作用,而且可以细化2024铝基体的晶粒,因而表现了良好的力学性能。  相似文献   

9.
综述了SiC颗粒增强铝基复合材料的搅拌法、粉末冶金法、挤压铸造法、喷射沉积法、高能超声半固态复合法和高能球磨法等制备工艺的原理、特点、应用及其最新研究进展,并展望了未来的发展方向。  相似文献   

10.
增强颗粒对颗粒增强铝基复合材料强度的影响   总被引:4,自引:0,他引:4  
通过ASHALBY等效夹杂理论分析复合材料受载时作用在增强体上的应力,并假设增强体的断裂符合WEIBULL分布,在综合考虑复合材料各种强化机制的基础上引入增强体断裂对材料屈服强度的影响,建立了一个复合材料的屈服强度模型,将其应用于SiC颗粒增强AJ基复合材料,发现在屈服状态下复合材料的颗粒断裂分数随着增强体的体积含量和粒度的增加而增加,但增强体粒度变化对颗粒断裂影响更大。同时发现WEIBULL常数m取3时模型预测强度值与实测强度吻合得很好。  相似文献   

11.
简要介绍了SiC颗粒增强铝基复合材料的优点及几种制备方法,包括搅拌法、浸渗法、喷射法、粉末冶金法和固液分离法;并对其后热变形加工参数对复合材料的性能影响进行了论述;最后,展望了粉末冶金法制备铝基复合材料的发展前景。  相似文献   

12.
碳化硅颗粒增强铝基复合材料的研究进展   总被引:10,自引:0,他引:10  
综述了碳化硅颗粒增强铝基复合材料的国内外研究现状,从材料的选择、制备技术和性能等方面,分析了该材料发展过程中存在的一些问题以及相应的改进措施,并且指出了该材料今后发展的几个方向。  相似文献   

13.
陶瓷颗粒增强钛基复合材料具有高比强度、低密度、高弹性模量等特点,成为钛基复合材料发展领域新的研究热点。系统地介绍了陶瓷颗粒增强钛基复合材料的最新研究进展和发展趋势,重点论述了该类复合材料组分的选择与改善匹配性的措施,并简要介绍了几种常用的制备方法,包括金属粉末注射成形法(MIM)和原位合成法(In-Situ)及其与传统制备方法结合形成的新工艺。  相似文献   

14.
通过粉末冶金真空热压烧结法制备双尺度(纳米、微米)混杂SiC颗粒增强铝基复合材料,研究不同烧结温度和压力对复合材料的组织、密度、硬度及耐磨性的影响。试验结果表明:SiC颗粒在复合材料基体中分布均匀,基体与增强体界面结合较好。随着烧结温度和压力的增高,复合材料的致密度、硬度、耐磨性均先增大后减小,最佳烧结温度和压力分别为460℃和30 MPa,微纳米混杂颗粒增强、单一微米颗粒增强、单一纳米颗粒增强复合材料的硬度分别是76.6 HV、70.7 HV、62.75 HV,比基体分别提高52.4%、40.6%、24.8%,耐磨性分别是基体的2.22倍、1.71倍、1.42倍。  相似文献   

15.
铸造法是目前最主要的一种制备颗粒增强铝基复合材料的方法。据此介绍了几类制备颗粒增强铝基复合材料的铸造方法,并介绍了此种工艺方法应注意的技术问题及解决办法,提出了用铸造法制备颗粒增强铝基复合材料的原则。  相似文献   

16.
17.
《有色设备》2008,(3):61-61
近日,中国铝业山东分公司研发成功一种具有强度高、耐磨性能强、抗腐蚀性能好、可以广泛用于航天航空制造和汽车机械业的新型材料——铝基复合材料,不仅填补了我国铝基复合材料规模化生产的空白,而且有望打破我国长期依赖进口的局面,对企业产品结构升级和可持续发展具有十分重要的意义。  相似文献   

18.
颗粒增强铝基复合材料疲劳断裂研究   总被引:1,自引:0,他引:1  
对粉末冶金法制备的碳化硅颗粒增强铝基复合材料进行了旋转弯曲疲劳试验研究。采用金相显微镜和扫描电镜分别观察了疲劳试验后复合材料纵向显微组织和疲劳断口。通过金相显微镜,观察了增强体颗粒在疲劳循环应力水平下可能的损伤形式。通过疲劳断口观察,分析了断面上不同区域的疲劳裂纹传播特征。结果表明,增强体的加入有效地提高了复合材料的屈服强度、弹性模量和疲劳性能,使复合材料高周疲劳极限提高到约250MPa(1×10^7循环周次)。复合材料的疲劳损伤随机分布于试样内。断口分析还表明复合材料疲劳同样遵循裂纹萌生,长大,失稳断裂规律,其裂纹起源于铝基体内。加入SiC颗粒减弱或遮盖了疲劳裂纹传播时的晶体学特征,使得复合材料高周疲劳断面没有发现常见的疲劳辉纹。  相似文献   

19.
采用粉末冶金法制备SiCp/6061Al复合材料,研究热压温度、球磨工艺参数和SiC颗粒(SiCp)体积分数对SiC颗粒增强铝基复合材料性能的影响,测试其力学性能及物理性能,用扫描电镜对材料的微观组织和断口进行观察。结果表明:540℃是较适合的热压温度;随着SiCp含量的增加,复合材料的致密度、热膨胀系数下降,抗拉强度先提高后迅速降低。  相似文献   

20.
硅颗粒增强铝基复合材料(Si/Al)具有低热膨胀、高导热、可焊接的综合性能,能够很好满足微电子器件封装的技术要求,在微电子封装领域具有广阔的应用前景。激光焊接工艺性能是微电子封装的重要应用工艺之一,也是制约封装材料应用的瓶颈问题之一。为了提高Si/Al复合材料的激光焊接工艺性能,本文采用工艺灵活的粉末冶金技术,根据粉末的粒度和纯度的差异设计制备了4种组分的50%Si/Al和两种27%Si/Al复合材料,在较宽的激光参数范围内研究了材料的激光焊接行为。结果表明,粉末粒度和纯度的调整极大地影响了材料对激光的响应特点,对焊缝表面成型、焊接气孔率以及熔池尺寸都产生了较大影响。其中,粉末粒度较粗、纯度较低的50%Si/Al复合材料的焊接气孔率最低,预计具有较高的气密性。本文的研究结果对于提高Si/Al复合材料的激光焊接气密性、推动粉末冶金铝基复合材料在电子领域的应用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号