首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
万文  马德刚  李经哲  马旭朝 《炼钢》2020,36(3):27-31
通过对超低碳钢RH及连铸中间包取样数据进行分析,发现RH升温吹氧量的增加导致全氧含量、渣中TFe含量升高,w(CaO)/w(Al_2O_3)逐渐降低,对控制大尺寸Al_2O_3夹杂物数量比例及中包全氧含量十分不利,因此采用LF+RH双联工艺取消吹氧升温,提高钢水纯净度。该工艺中转炉低温低氧出钢,LF优化钢包底吹强度、给电升温时间,在给电结束后钢水氧质量分数控制在0.033%~0.045%,改质后钢水氧质量分数控制在0.025%~0.030%。RH取消吹氧升温,脱碳结束氧质量分数控制在0.015%~0.020%,RH出站渣中w(TFe)≤5%,w(CaO)/w(Al_2O_3)稳定控制在1.3~1.5。在工业生产应用后,超低碳钢双联工艺路线下的夹杂物控制水平可以满足冷轧汽车外板要求。  相似文献   

2.
周剑丰  张波 《炼钢》2012,28(3):27-32
对湖南华菱涟源钢铁集团有限公司新转炉炼钢厂RH-MFB冶炼超低碳IF钢生产进行了研究,分析转炉出钢中碳氧含量和温度、真空循环时间、冶炼渣成分等因素对钢液中夹杂物数量、粒径分布的影响。对RH精炼过程中工艺参数进行了优化。使该厂在生产IF超低碳钢时达到w(C)≤30×10-6、w(N)≤30×10-6、w(O)≤20×10-6的技术要求,钢液成分及质量稳定。  相似文献   

3.
介绍了唐山国丰钢铁有限公司第一炼钢厂RH投产后超低碳钢的生产工艺开发情况。通过对不同的精炼工艺路线进行对比,使用优化的LF-RH精炼工艺,实现对钢水巾C、N等元素的稳定控制,满足多炉连浇的生产组织需要。  相似文献   

4.
为优化低碳钢RH轻处理脱碳工艺,对RH轻处理过程碳和氧的变化规律进行了工业生产实践。结果表明,RH轻处理过程中ln(w[C]_0/w[C]_t)与轻处理时间t呈线性关系,斜率为0.147 5 min~(-1);RH出站时钢水[O]含量控制≤0.015%,有利于提高钢水洁净度;RH进站初始碳含量在0.05%左右时,在真空度为4 k Pa条件下,经过真空脱碳处理5 min左右后,结束碳含量控制在0.025%以下,结束氧含量控制在0.015%以下;成品非金属夹杂物级别也相对降低。  相似文献   

5.
对比分析柳钢150t转炉炼钢系统两种(转炉-钢包炉精炼-RH精炼-连铸和转炉-RH精炼-连铸)生产IF钢的工艺。结果表明,采用转炉-RH精炼-连铸工艺生产的IF钢:(1)洁净度相对更高,生产成本更低;(2)RH精炼结束w(C)≤10×10-6、w全(O)≤31×10-6、w(N)≤20×10-6,中间包w(C)≤11×10-6、w全(O)≤25×10-6、w(N)≤20×10-6;(3)造成钢水洁净度偏低的主要原因是RH脱氧合金化后循环时间偏短,且RH精炼炉渣控制不稳定。  相似文献   

6.
针对攀枝花钢钒有限公司难以稳定生产w(S)≤0.006%高级别电工钢的问题,通过开发RH脱硫剂、钢包渣改性及工艺参数控制,形成了RH脱硫系统工艺技术.经工业试验表明,采用该工艺技术后,钢水脱硫率最高达到42%,成品w(S)控制在0.005%以下,全氧、氮含量也得到了较好的控制,且脱硫剂没有引起钢水增碳,满足高级别电工钢的生产要求.  相似文献   

7.
SA508M.Gr.3CL.2钢主要用于生产制造核电装备的锻件钢锭,其对P、H元素和w(N)/w(Al)比值等要求严格。上海电气上重铸锻有限公司根据此钢种的成分要求,制定了冶炼生产工艺,通过采取严格控制配料、脱磷、脱硫、偏析以及真空脱气等工艺措施,成功生产了460t超大型SA508-3钢钢锭。锻件成品中w(P)≤0.004%、w(S)≤0.002%、w(H)≤0.8×10-6、w(O)5.0×10~(-6),w(N)/w(Al)比值在0.6~0.9之间,C、Mn、Mo元素偏析控制较好,满足了此钢种的内控成分要求。  相似文献   

8.
唐卫红 《炼钢》2012,28(3):42-44
通过优化LF渣系,VD和LF的吹氩制度以及连铸的工艺参数,有效地提高了钢水的洁净度和板坯质量,优化后钢水中w(P)≤0.015%、w(S)≤0.003%、w(O)≤4×10-6、w(H)≤1.3×10-6、w(N)≤40×10-6。板坯的中心偏析和疏松均为C类1.0级,钢板中心偏析和疏松均为C类0.5级;钢板平均探伤合格率提高了3.15%,探伤合格率最高达到了99.51%。  相似文献   

9.
通过工艺改进和AOD的使用,基于不锈钢冶炼过程的“脱碳保铬”原理,结合AOD冶炼工艺优化,获得高质量钢水成分为:w(C)=0.02%~0.04%、w(Si)=0.49%~0.53%、w(Mn)=0.60%~0.69%、w(Cr)=12.90 %~13.57%、w(Ni)=3.95 %~4.34%、w(S)≤0.015%、w(P)≤0.028%、w(O)≤80×10-6、w(N)≤150×10-6、w(H)≤3×10-6,并使球状氧化物评级不超过2.0.新工艺大幅提高了马氏体不锈钢的钢水洁净度,满足了熔炼成分及各项理化指标的要求.  相似文献   

10.
为了对RH轻处理低碳钢的工艺技术提供理论依据,对RH轻处理低碳钢过程脱碳规律进行了研究。结果表明,RH轻处理过程ln(w[C]_0/w[C]_t)与t具有线性关系,其斜率Kc为0.1475min~(-1);RH进站钢水[C]含量控制在0.045%-0.065%,钢水[O]含量控制在300-500PPm,有利于提高RH轻处理脱碳效率;RH出站时钢水[O]含量控制150PPm以下,有利于提高钢水洁净度。根据研究结果有针对性提出工艺优化措施,工业实践表明,采用RH-LF双精炼工艺生产WX08钢时,降低了转炉吹炼终点氧含量,成品非金属夹杂物级别也相对降低。  相似文献   

11.
IF钢生产过程中RH-TB真空脱碳效果的工艺研究   总被引:2,自引:1,他引:2  
张锦刚  李德刚  于功力  温铁光  黄玉平 《钢铁》2006,41(6):32-34,46
在生产超低碳IF钢的RH-TB真空处理过程中,采用自然脱碳和强制脱碳的工艺方法试验研究了不同初始碳氧含量钢水的脱碳效果.试验结果表明,初始钢水条件和操作方式直接影响钢水脱碳的冶金效果,满足IF钢稳定生产w(C)≤0.0025%及w(TO)≤0.0025%的最佳初始钢水控制条件为w(C)=0.030%~0.040%,a[O]=0.050%~0.070%,相应的温度为1 590~1 610℃.试验结果得到了工业试验的验证.  相似文献   

12.
对韶钢超低碳钢炉外精炼工艺进行优化,从路径选择、钢水氧含量、LF渣系渣量、RH脱碳脱氧工艺、顶渣改质技术、可浇性等方面研究改进,制定了合理的控制要求,并实际应用到超低碳钢生产中.结果表明,优化工艺后钢液化学成分、温度及时间节点控制均满足生产要求;同时,钢水可浇性、铸坯表面质量均大大提高,目前超低碳钢连浇炉数已达到5炉以上,钢水收得率由75%提高到92%.  相似文献   

13.
介绍了抚顺特殊钢公司通过快锻工艺制造Φ400~700mm大规格风电轴承钢的生产实践。通过控制钢中残余元素、VD精练结束前高拉铝、采用保护气氛浇注、使用保护气氛电渣炉生产及墩拔锻造工艺等,使渗碳轴承钢G20Cr2Ni4A的w(Ti)≤0.003%,w(Al)为0.015%~0.050%,w(O)≤0.001 5%,w(Sn)≤0.03%,w(As)≤0.04%,w(Sb)≤0.015%,w(Pb)≤0.02%,w(Ca)≤0.001%,w(Bi)≤0.02%,且钢中夹杂物及低倍组织处于较好水平,渗碳轴承钢晶粒度、性能、探伤等指标完全适合风电轴承套圈的使用要求。  相似文献   

14.
沈昶 《炼钢》2010,26(2)
论述了马鞍山钢铁股份公司CSP流程生产超低碳钢工艺中RH真空脱碳技术的优化,通过对转炉终点的控制、RH-MFB吹氧工艺的优化、提升气体流量的优化实现了在同样RH处理周期的条件下,RH终点平均w(C)达到15×10-6,为CSP流程批量生产超低碳钢提供了技术保障。  相似文献   

15.
加磷高强超低碳钢具有IF钢特性,特点是添加一定含量的P、Mn、Nb等合金元素以达到固溶强化的目的,提高钢种强度而又不影响钢种塑性,但高磷钢水易引起水口絮瘤堵塞。通过研究钢中氧化物夹杂(Al_2O_3为主)的生成与去除这一直接关键影响因素,分析内在机理,进行相关的理论研究和生产试验,通过工艺流程的优化、转炉终点高温高磷成分控制、RH精炼微合金化工艺优化及全流程时间匹配,减少了钢中夹杂物的生成、促进了夹杂物的聚集上浮去除等,改善钢水可浇性。RH出站钢水平均T.O质量分数25×10~(-6),连铸中包钢水平均T.O质量分数19×10~(-6),最终解决加磷高强超低碳钢可浇性问题,实现100 t LD→RH→CC工艺流程的大批量稳定生产,单支水口稳定5炉连浇。  相似文献   

16.
邯钢邯宝炼钢厂在生产CR180BH钢过程中成品w(C)控制不准,主要原因是RH脱碳过量,使w(C)产生较大波动,且在过程增碳环节上把握不准。通过建立RH脱碳模型以及严格控制钢水进站条件,RH进站w(O)控制在0.05%~0.075%,进站w(C)控制在0.03%~0.05%,从而实现RH脱碳终点w(C)稳定控制;同时加强合金辅料检查,加强连铸用耐材质量管理,使w(C)得到精准的控制,成品w(C)稳定控制在0.002 0%~0.003 0%,成分命中率从86%提高到96%。  相似文献   

17.
文章结合新建RH炉装备条件、生产工艺技术特点,以DC04钢生产实际为例,全面地分析了RH炉冶炼超低碳钢工艺控制要素,讨论了各个工艺环节间的相互联系,提出了稳定生产超低碳品种钢的工艺和提高产品质量的改进措施。  相似文献   

18.
对CSP厂钢包LF炉脱硫的反应机理进行了分析,在此基础上,研究了炉渣成分对硫分配比的影响、钢水硫含量的变化情况。提出了最佳脱硫渣成分控制范围w(CaO):52%~57%、w(Al_2O_3):35%~40%、w(SiO_2)≤6%,w(FeO+MnO)≤1%;通过生产控制,钢包炉深脱硫后成品w(S)≤0.004%,满足了生产低硫、超低硫钢种的需求。  相似文献   

19.
赵艳宇  王东  庞炜光  张涛  南晓东  刘宇 《炼钢》2015,31(2):13-16
介绍了首钢股份公司迁安钢铁公司在冶炼超低碳超低硫钢过程中工艺、操作等方面的经验,并试验对比低硫钢和超低硫钢对硫含量的控制,得出了硫含量的控制工艺路线,成品w(S)≤0.003 5%的过程能力指数由0.85提高至1.13。通过铁水预处理、转炉主副原料控制、生产计划优化、出钢渣洗、RH脱硫等措施可将低硫钢种90%板坯成品w(S)控制在0.003%以内,与低硫钢种RH工序前均采取相同工艺的前提下,不同的是在RH合金化后,加入脱硫剂将钢液w(S)从0.002 6%降低至0.001 4%,最终超低硫钢成品w(S)全部控制在0.002%以内。  相似文献   

20.
张国兴  王谦  何生平  曾建华 《钢铁》2011,46(5):38-42
针对采用弱脱氧工艺冶炼超低碳钢,利用Factsage软件计算了顶渣氧化性与钢水氧活度之间的关系,进而计算了炉渣各组元对硫分配比的影响.结果表明,对于超低碳钢的生产,顶渣中w(FeO+MnO)至少应控制在15%以下,w(CaO)/w(A12O3)控制在2.5~4.0.工业试验表明,通过顶渣改性将w(FeO+MnO)控制在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号