首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以常规湿法炼锌工艺锌浸渣为研究对象,对比研究常压酸浸和加压酸浸条件下锌浸渣的酸性浸出减量化效果,以及渣中锌、铜和铟等有价金属的浸出率。结果表明,在常压酸浸条件下,渣量可减少65%以上,渣中锌含量可降至3%左右,锌、铜和铟的浸出率均在91%以上;在加压酸浸条件下,渣量可减少40%以上,渣中锌含量可将至2%以下,锌和铜的浸出率达到95%左右,但铟浸出率仅为70%左右,相对较低。常压酸浸过程锌浸渣中的铁绝大部分浸出,有利于铟的浸出;加压酸浸过程锌浸渣中的铁大量以铅铁矾的形式留在渣中,阻碍了铟的浸出。常压浸出液中铁含量较高,达到25 g/L以上;加压浸出液中铁含量较低,小于2 g/L,有利于后续浸出液中铜、铟的回收。常压浸出渣量少,有利于渣中铅、银的富集,可单独销售;加压浸出由于铁沉淀入渣,致使渣中铅、银富集比低,适合于铅锌联合企业返回铅熔炼炉。  相似文献   

2.
开展湿法炼锌浸出渣和锌精矿联合酸浸试验,利用硫酸浸出湿法炼锌常规浸出渣中以铁酸锌等方式存在的锌,同时采用高铁锌精矿将浸出液中的三价铁离子还原为二价铁离子,实现锌精矿中锌的同步浸出。探讨锌浸出渣和锌精矿投料比、初始硫酸浓度、反应时间、液固体积质量比和浸出温度对锌及伴生金属铜、铟和杂质金属铁浸出率的影响。结果表明,在浸出终点浸出液中硫酸浓度20~40g/L、锌浸出渣与锌精矿质量比1∶0.25、原料粒度-0.074mm、液固体积质量比6mL/g、反应温度90℃、反应时间3h的条件下,锌、铟、铜的浸出率都在96%以上,浸出液中95%以上的铁被还原为二价铁离子,满足后续工艺的要求。  相似文献   

3.
研究了将超声波引入到铁矾渣浸出过程中强化铟、锌浸出,对比了直接硫酸浸出和超声波辅助硫酸浸出铟、锌效果,考察了超声波功率、浸出时间、反应温度、硫酸浓度、液固体积质量比和机械搅拌速度对铟、锌浸出率的影响,并对2种方法的浸出渣进行XRD和SEM分析。结果表明:在其他条件相同情况下,酸浸过程中引入超声波可以加快铁矾渣的溶解,提高铟、锌浸出率;反应温度、硫酸浓度、超声波功率对铟、锌浸出率影响较大,浸出时间对铟浸出率影响较小而对锌浸出率影响较大,液固体积质量比和机械搅拌速度对铟、锌浸出率影响不大。该方法为铁矾渣中铟、锌的高效提取提供了一个可供选择的新方法。  相似文献   

4.
考察锌粉置换渣硫酸熟化浸出中,浓硫酸与置换渣酸矿体积质量比、熟化温度、熟化时间、浸出酸度对锌粉置换渣主金属镓、锗、铜、锌浸出率及浸出渣过滤性能的影响。结果表明,硫酸熟化可以解决锌粉置换渣常规浸出时硅胶造成过滤困难的问题,同时镓、铜、锌浸出率达到97%以上,锗浸出率达到70%以上,浸出渣经火法1 000℃以上高温还原挥发,锗挥发率达到85%以上。  相似文献   

5.
开展了两种加压浸出工艺处理锌浸出渣的试验研究。“加压还原浸出+氧压浸出”取代原针铁矿工艺的“三段逆流热酸浸出+还原”,锌焙烧矿到铅渣的渣率为15.74%,锌、铁、铜、铟、镁的浸出率分别为99.32%、93.50%、95.02%、91.03%、99.97%,各项指标均优于原工艺,锌、铟的浸出率分别提高了1.82、11.03个百分点,反应时间由14 h缩短为4 h,液固分离次数由4次减少为2次。“两段逆流加压浸出”取代原黄钾铁矾工艺的“硅浸+预中和+黄钾铁矾沉铁”,锌焙烧矿到二段渣的渣率为35.88%,锌、铁、铜、铟、镁的浸出率分别为98.50%、4.94%、90.48%、2.69%、93.77%,各项指标均优于原工艺,浸出后液(相当于水解除铁后液)可以直接返回中性浸出工序,反应时间由16 h缩短为4 h,液固分离次数由3次减少为2次。加压浸出采用密闭的加压釜,更容易实现整个炼锌系统蒸汽平衡,无需额外增加蒸汽锅炉。  相似文献   

6.
氯盐体系中锌焙砂中浸渣高温高酸还原浸出研究   总被引:4,自引:1,他引:4  
提出了一种从高铟锌焙砂中浸渣中回收铟和铁的新工艺,对该工艺的关键工序--盐酸高温浸出和还原浸出进行了系统研究.结果表明,在高酸浸出优化条件下,锌、铁、铟的浸出率分别为98.98%,92.17%和99.30%;在还原浸出优化条件下,锌、铁、铟的浸出率及三价铁还原率分别为93.2%,97.19%,98.07%和98.67%.该工艺具有资源利用率高、锌铁易分离、易提纯等特点.  相似文献   

7.
以锌浸出渣为对象,研究了在硫酸—二氧化硫体系还原浸出锌浸渣过程中反应温度、转速、液固比、初始硫酸浓度、SO2分压对锌和铟浸出行为及浸出率的影响。结果表明:采用SO2对锌浸渣进行还原浸出能够大幅提高锌和铟的浸出率,在SO2-H2SO4体系下锌浸渣还原过程中的锌和铟的浸出行为及动力学特性符合二级反应方程,浸出过程受到化学反应控制,表观活化能分别为21.72和39.16kJ/mol,提高温度能够显著提高锌和铟的浸出速率,提高液固比和初始硫酸浓度对锌和铟浸出速率影响较小,在一定范围内提高二氧化硫分压对锌和铟浸出速率影响较为显著。在反应温度105℃、转速500r/min、液固比8、初始硫酸浓度120g/L、SO2分压200kPa的条件下反应150min,锌浸出率达到96%以上、铟浸出率达到95%以上。  相似文献   

8.
对广西大厂的含铟高铁闪锌矿,采用黄钾铁矾法沉铁、转窑还原挥发、硫酸3段浸出回收铟.高浸渣中w(In)=0.3%~0.5%.提出了采用盐酸体系从含铟高浸渣中浸出铟、锌、锡、锑工艺,研究了温度、反应时间、盐酸用量、液固质量比对铟浸出率的影响.在浸出时间2 h、温度90 ℃、盐酸用量为理论量的2倍、液固质量比10:3的最佳条件下,经过2段浸出,In,Fe,Zn浸出率分别为96.36%,98.48%和97.79 %.  相似文献   

9.
回转窑挥发法是处理锌浸出渣的成熟工艺,针对某湿法炼锌浸出渣开展还原挥发锌、铅、铟试验研究。结果表明,锌浸渣中的物相主要为铁酸锌,在煤配比30%、挥发温度1 150 ℃、挥发1 h的条件下,锌、铅和铟的挥发率分别为99.92%、99.59和83.46%,窑渣含锌、铅和铟分别为0.025%、0.027%和0.013%。窑渣磁选回收铁,再浮选回收碳、铜和银,尾渣可以作为水泥和砖等建材原料。  相似文献   

10.
从铜渣中加压酸浸铜的试验研究   总被引:1,自引:0,他引:1  
针对铜渣的物相组成,研究了加压酸浸有价金属,考察了铜渣粒度、搅拌速度、温度、时间、氧气体积分数、浸出剂硫酸质量浓度、液固体积质量比对有价金属浸出率的影响。通过试验,确定了最佳工艺参数:浸出温度80℃,液固体积质量比4.5∶1,浸出剂硫酸质量浓度105 g/L ,m(铜)∶ m(酸)=1∶1.74,氧气体积分数≥30%,氧气压力0.2 M Pa ,浸出时间4 h ,搅拌速度500 r/min。最佳条件下,有价金属浸出率分别为:铜≥92%,镉≥99%,锌≥46%,锗≥70%,铟≥70%;铅100%、银≥97%留在浸出渣中。  相似文献   

11.
针对白烟尘既富含铜、铅、锌、铋等多种有价金属,又含有砷、镉等有害元素的特点,提出一种两段逆流浸出工艺。采用该工艺进行实验处理某铜冶炼厂生产的白烟尘,分别考察了酸浸方式、初始硫酸质量浓度、酸浸液固比、酸浸温度、酸浸时间对铜砷浸出的影响。探索出最佳工艺条件液固比为4∶1,初始硫酸质量浓度80g/L,反应温度为80℃,反应时间为2 h。二次浸出液返回继续浸出白烟尘,此时白烟尘铜、锌、砷浸出率分别为95.7%、98.5%、92.2%,而浸出渣中铜、锌、砷品位降至0.42%、0.50%、1.28%。铅、铋的品位实现有效富集,二次酸浸渣中品位分别为47.73%和9.72%,相比原料分别富集约2.6倍和4.5倍。  相似文献   

12.
高铁富铟锌焙砂采用传统的热酸浸出工艺,存在锌、铟的回收率低,铁矾渣渣量大等问题。锌还原焙砂热压酸性选择性浸出试验,包括还原焙砂的还原度、酸矿比、热压温度、反应时间等条件试验,综合试验结果得到锌浸出率98.9%、铟浸出率91.4%,铁浸出率6.4%,得到铁渣品位51.75%,铁渣含硫2.13%。  相似文献   

13.
锌氧压浸出渣中含有大量锌、铁、铅等有价金属,以及银、镓、锗、铟等稀贵金属,具有较高回收利用价值。分析了锌氧压浸出渣中各金属回收工艺的研究进展及优缺点,指出了锌氧压浸出渣中金属回收所面临的机遇与挑战,以及未来研究方向。  相似文献   

14.
研究了用硫酸从火法处理电镀污泥所得富含锌铅锡烟尘中浸出锌并富集铅、锡,考察了硫酸质量浓度、温度、浸出时间、液固体积质量比对锌浸出率的影响。结果表明:采用两段逆流酸浸工艺,在液固体积质量比3/1、温度80℃、浸出时间1h、一段浸出硫酸质量浓度30g/L、二段浸出硫酸质量浓度110g/L条件下,锌浸出率达96.44%,渣中锌质量分数降至0.91%,渣中铅、锡分别富集至20.13%和36.86%。通过锌的浸出及铅锡富集,实现了有价金属综合回收。  相似文献   

15.
研究了采用水洗—焙烧—还原酸浸工艺从A药剂钴渣中高效回收钴等有价金属,考察了焙烧温度、浸出时间、浸出温度、硫酸浓度、还原剂用量等对有价金属浸出率的影响。结果表明:钴渣在液固体积质量比5/1、常温下搅拌水洗1 h,然后在500℃下焙烧2 h,最后在80℃下用质量浓度80 g/L硫酸、10 g/L亚硫酸钠浸出1 h,钴浸出率在90%以上,锌浸出率在96%以上,镉浸出率大于99%,浸出液中的有价金属可高效回收。  相似文献   

16.
针对湿法炼锌流程长、渣率高和矾难于破坏等问题,研发了一套锌精矿短流程还原浸出工艺,同时研制出一套可视化、操作简单的连续扩大试验设备。将热酸浸出流程中的高温高酸浸出与还原浸出合并可缩短工艺流程和反应时间,并利用流程中产生的Fe~(3+)作为氧化剂氧化浸出渣中未反应完全的锌,提高锌浸出率和降低渣率。结果表明,采用该流程,锌浸出率为97.94%,铁浸出率为94.25%,铜浸出率为99.97%,铟浸出率为99.95%,还原后液中Fe3+质量浓度2g/L。该工艺流程和设备可在湿法炼锌生产实践中推广使用。  相似文献   

17.
考察了搅拌速度、浸出时间、初始硫酸浓度、浸出温度、液固质量比等条件对稀硫酸浸出铜闪速炉烟灰硫酸化焙烧所得焙砂的影响。结果表明,在下述最佳浸出条件下:搅拌速度400r/min、浸出时间70min、初始硫酸浓度0.8mol/L、浸出温度60℃、液固质量比5∶1,铜、铁、砷、铟等有价金属浸出率均在90%以上。  相似文献   

18.
采用硫酸-双氧水体系氧化浸出铅冰铜,在分析试验原理的基础上,以锌铜铁浸出率为考察指标,重点探讨反应温度、双氧水浓度、反应时间、硫酸浓度对锌铜铁浸出率的影响。试验结果表明:在温度20℃、双氧水浓度40 g/L、反应时间120 min和硫酸浓度120 g/L条件下,锌浸出率为99.35%,铜浸出率为99.16%,铅、硫在浸出渣中富集含量分别提高8.5%和7.11%。有效实现铅冰铜中锌、铜与铅、硫的分离及铅、硫等在浸出渣中的富集。  相似文献   

19.
以湿法炼锌渣高温挥发所得含铟氧化锌烟尘为原料,在对其进行物性分析基础上,提出在中性体系环境下微波辅助浸出氧化锌烟尘中锌的同时富集铟于渣中。考察了微波功率、硫酸浓度、浸出温度、浸出时间、液固比对烟尘中锌浸出率和铟富集率的影响。结果表明,在初始硫酸浓度65 g/L、浸出时间10 min、浸出温度65℃、液固比4 mL/g、微波功率600 W的条件下,锌的浸出率为80.31%,铟的富集率为42.23%,终点pH维持在5.1,铁几乎不被溶出。本方法实现了氧化锌烟尘中锌与铟的有效分离,并成功富集了铟,为后续铟的高效回收提供有利保障。  相似文献   

20.
以某湿法炼锌厂产出的锌浸渣浮选银精矿为原料,采用回转炉还原焙烧—低酸浸出工艺进行脱锌研究。结果表明:在碳粉加入量10%、焙烧温度600 ℃、时间120 min、原料粒度—0.1 mm、回转炉转速5 r/min的条件下,铁酸锌还原焙烧分解效果最优,焙烧产物中可溶锌率达到85.83%。在硫酸终点pH为2、液固比5 mL/g、浸出温度70 ℃、浸出时间90 min优化条件下,对焙烧产物进行选择性浸出,锌和铁的浸出率分别为84.23%和34.71%。浸出渣中未溶解铁锌氧化物主要为还原焙烧过程中团聚成块的大颗粒及被硫酸铅熔化包裹形成的颗粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号