共查询到20条相似文献,搜索用时 15 毫秒
1.
短期电网负荷预测是电网安全运行和经济调度的基础。现有预测方法存在对节假日预测不准确,不利于系统化等问题。根据短期负荷周期性变化的特点,创造性地提出双时间序列神经网络模型。同时为了克服实际温度数据缺失问题,提出一种新的温度量化方法。在广东省某地区的实际应用表明,该方法对于普通日和特殊日都取得了有较好的预测精度。 相似文献
2.
针对传统的短期电力负荷预测模型存在的预测精度不高和滞后性的问题,本文提出一种基于卷积神经网络、长短时记忆网络和注意力机制下的混合神经网络模型来进行预测。利用卷积层对多维的电力数据影响特征进行提取,过滤筛选其非重要影响因子,完成电力数据相关特征的映射变换,再通过长短时记忆网络层的循环,对时序性电力数据特征选择性提取,最后利用注意力机制添加重要特征的权重,经Adam算法优化后输出电力负荷预测的结果。依靠GPU强大的算力支撑来解决预测数据时的实时性问题,凭借多融合神经网络的手段来提高其预测精度。经由算例验证,所提出模型真实可靠,预测质量显著优于其他传统模型。 相似文献
3.
4.
基于神经网络的混沌时间序列短期预测 总被引:3,自引:0,他引:3
将神经网络理论、预测理论等引入混沌领域,采用了一种基于BP网络的预测方法,给出了该方法中神经网络的具体实现过程,经计算机仿真表明该方法是行之有效的,并给出了具体应用事例。 相似文献
5.
通过对电力负荷变化规律和影响因素的分析,集结多种单个模型所包含的信息,进行最佳组合,提出了在单一模型预测结果基础之上的基于神经网络的优化组合预测,确定了网络训练样本和隐含层的个数,可使提前一天的预测精度较传统预测模型有较大提高。并当发现某一点预测误差过大,可对该点利用文中提出的误差灰色模型修正预测结果,这样不仅可提高整体预测精度,更重要的是减小最大预测误差值和减少大预测误差发生的次数。仿真结果验证了该预测模型的可行性和有效性。 相似文献
6.
8.
针对大电网负荷预测的研究较多而微电网相对较少,因此建立合适的微电网负荷预测模型提高预测的准确度非常重要。本文针对输入变量较少的情况,分析并选用温度、日类型以及多个历史负荷量作为模型的输入变量,选用基于循环神经网络基础下的长短期记忆神经网络进行建模,构建基于LSTM神经网络的微网负荷预测模型。最后,为增强结果的可靠性,采用2组不同时间段的负荷数据分别进行预测,将LSTM神经网络的预测结果与BP神经网络、径向基函数神经网络、Elman神经网络的预测结果进行对比。实验结果表明,LSTM神经网络的预测结果要优于BP神经网络、径向基函数神经网络及Elman神经网络,采用LSTM神经网络负荷预测模型在微电网背景下具有比较好的推广前景。 相似文献
9.
为提升超短期电网负荷预测精度,提出基于Stacking多模型融合的超短期电网负荷预测法。首先,结合5-折交叉验证法分别训练第一层的LSTM、LightGBM、XGBoost三个初级学习器,将训练结果进行Stacking融合;然后将融合结果作为新特征用于训练第二层LightGBM次级学习器,使用次级学习器得到电网负荷预测的最终结果;最后利用山东省公共数据开放平台提供的某市实际超短期电网数据验证所提方法的有效性。实验结果表明,比起单一模型预测,所提的Stacking多模型融合预测法,在预测结果的平均精度与峰谷变化的适应能力方面更具优势。 相似文献
10.
11.
电力负荷预测是电力系统一项重要的工作。本文应用了BP神经网络对南方某地区短期电力负荷进行了预测。首先介绍了BP神经网络结构,其次是利用BP神经网络结合南方某地区电力负荷数据进行实证研究,并且在设计BP神经网络结构时考虑了气象因素对负荷的影响。 相似文献
12.
13.
本文分析了天气和节假日对电力负荷的影响 ,建立了神经网络和模糊逻辑相结合的综合预测模型进行短期负荷预测。预测结果经两步得出 ,首先训练神经网络 ,令其预测基本日负荷曲线 ,然后利用模糊逻辑根据天气因素以及是否节假日等情况对负荷曲线进行修正 ,使其在天气突变等情况下也能达到较高的预测精度。采用此模型对石家庄电力系统负荷进行预测分析 ,取得了令人满意的结果。 相似文献
14.
15.
16.
系统负荷短期预测作为电网调度及规划中必不可少的一环,在安排发电机组启停及检修计划、保持电网运行和降低发电成本等领域起到重要作用。针对系统负荷预测,近年来国内外已提出一系列智能预测方法,但其大多采用单一模型进行实现。而单一模型在同一预测对象前提下,只擅长挖掘数据的某一类特征,进而使得预测结果存在不同偏好。因此本文提出一种基于Stacking集成学习的多类型人工智能模型融合方法,即利用多个不同类型的基础模型构成弱分类器,使其在相同样本基础上单独训练、单独预测后,再利用另一个人工智能模型作为强分类器对所有弱分类器的预测结果进行拟合,最终输出一个唯一的系统负荷预测结果。最后,以某网5个省的真实负荷作为实验对象,并抽取一段时间的平均准确率进行对比。结果表明,本文提出的预测方法准确率要高于单一人工智能模型。 相似文献
17.
针对在电力系统短期负荷预测应用中,单个神经网络存在预测精度较低、预测结果不稳定、泛化能力差的特点,本文提出一种新的基于多神经网络自适应集成的预测模型.通过对某地区的实际负荷数据进行预测分析表明,该方法以很小的运算时间代价、较小的存储空间代价显著地提高了单个网络的预测精度和泛化能力,具有良好的应用价值. 相似文献
18.
19.
短期负荷预测的结果对电力系统的经济效益具有重要影响。针对多极值问题,首次提出了一种体现大融合思想的共享式全局寻优算法,将几种全局寻优算法有机组合,使它们共享优化信息,协同寻优,从而形成最丰富的寻优机制,达到最强的全局寻优能力。并且为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将SGOA算法和BP算法相结合的短期负荷预测方法,用SGOA算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法。在构建网络模型时,同时也考虑到了气候、温度等因素的影响,对它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。 相似文献