首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长输油气管线由于腐蚀所引起的管壁缺陷,是油气管线正常运行的一大隐患。针对管壁上的轴向缺陷,用有限元法对其进行分析计算,给出了管壁轴向缺陷处的应力分布规律,并研究了缺陷长度、宽度和剩余壁厚对应力的影响。同时拟合了缺陷处应力的计算公式,为工程技术人员的设计计算,以及现场管道安全运营动态管理提供了依据。  相似文献   

2.
为研究高温下含缺陷管道的局部力学特性,以X70管道为研究对象,基于弹塑性力学知识,利用ANSYS模拟其在高温作用下缺陷局部的等效应力分布;并分析了高温下缺陷局部的最大等效应力、塑性应变随内压的变化趋势;进一步讨论了在特定运行压力下最大等效应力随腐蚀深度的变化趋势;最后对比了失效压力下是否考虑热膨胀影响的等效应力分布及变化。结果表明,仅有高温时,腐蚀区内沿环向分布有较大应力;随着内压的增加,最大等效应力先减后增,较大应力也变为沿轴向分布;温度达到一定值后,缺陷越深,其对管道剩余强度的影响越大;高温作用下ASME B31G1984、ASME B31G1991、PCORRC、DNVRPF101等方法仍适用于对含椭球型缺陷管道进行剩余强度的评估。  相似文献   

3.
针对埋地管道设计未充分考虑作业过程中管道受冻胀和腐蚀作用时的受力变化情况,根据冻土区埋地腐蚀管道的复杂性,以及冻土区埋地管道受力变形破环因素,建立适用于冻土区埋地腐蚀管道的有限元模型,研究了环境温度、腐蚀深度和长度等因素对管道应力的影响。结果表明,影响冻土对腐蚀管道作用的因素主要为抬升高度及端部拉应力,抬升高度导致腐蚀管道的应力及应变线性增加,但端部拉应力的作用效果与其相反;管道的应力应变与腐蚀深度的二次方成正比,腐蚀长度的增加导致管道应力及应变先急剧增加,且长度大于150 mm时,管道力学性能在一定范围内小幅波动。研究结果可为冻土区埋地管道的设计提供一种新的思路和方法。  相似文献   

4.
针对腐蚀缺陷管道剩余强度的评价问题,研究了ASME B31G标准、Rstreng标准、DNV RPF101标准及其算法,并对腐蚀缺陷管道的剩余强度进行了评价.计算了不同评价标准对于同一腐蚀缺陷的评价结果,评价了库鄯线原油管道和独乌线成品油管道中不同长度、深度的腐蚀缺陷,对评价结果及其变化情况进行对比分析.结果表明,对于同一腐蚀缺陷,不同评价标准所得到的管道剩余强度值之间存在差异,即各评价标准的保守性不同;不同评价标准适用于不同的腐蚀长度区间,且腐蚀缺陷尺寸的变化对不同评价标准所得到的管道剩余强度的影响程度不同.  相似文献   

5.
根据机械动力学原理,建立静环轴向振动方程和端面液膜压力微分方程,并求出液膜压力的解析表达式和静环轴向位移表达式。在假设不受系统外力干扰的条件下,分析静环端面结构参数(转折半径和端面锥角)在轴向微小扰动的情况下对液膜刚度、液膜阻尼和静环轴向振动特性的影响。结果表明:随着转折半径的增大,液膜刚度变小,液膜阻尼增大,振动阻尼从弱阻尼向过阻尼状态转变;随着端面锥角的增大,液膜刚度减小,液膜阻尼减小,振动阻尼从过阻尼向弱阻尼状态转变。  相似文献   

6.
摘要:根据机械动力学原理,建立静环轴向振动方程和端面液膜压力微分方程,并求出液膜压力的解析表达式和静环轴向位移表达式。在假设不受系统外力干扰的条件下,分析静环端面结构参数(转折半径和端面锥角)在轴向微小扰动的情况下对液膜刚度、液膜阻尼和静环轴向振动特性的影响。结果表明:随着转折半径的增大,液膜刚度变小,液膜阻尼增大,振动阻尼从弱阻尼向过阻尼状态转变;随着端面锥角的增大,液膜刚度减小,液膜阻尼减小,振动阻尼从过阻尼向弱阻尼状态转变。  相似文献   

7.
采用计算流体动力学方法建立高速气体冲蚀无刺孔钻杆接头和具有腐蚀坑的钻杆接头模型。无刺孔的钻杆接头内,只有钻杆内产生腐蚀坑后,流场才变为钻杆本体刺漏的主要影响因素之一;钻杆带有腐蚀坑时,其钻杆内的最大流速远大于无腐蚀坑钻杆内的最大流速;钻杆的穿刺及断裂主要是由于裂纹从钻杆内壁向外壁不断扩展的结果。  相似文献   

8.
含三类不同未熔合缺陷的三通管件应力集中系数K的理论解析十分复杂。因此,采用有限元数值分析软件,建立在内压载荷作用下含所研究缺陷三通管的有限元模型,经过计算得出4个影响因素下的应力集中系数K及其变化规律。结果表明,含三类不同未熔合缺陷的三通管在肩部及领口区域应力集中系数K相对较大,且应力集中现象严重,应力集中系数K随缺陷的轴向长度、深度的增加而缓慢增大,随缺陷环向长度的增大而迅速减小。  相似文献   

9.
为研究压电半导体周期结构中的弹性波传播特性,本文采用哈密顿变分原理推导出Love型压电半导体杆的基本方程;再在此基础上,针对由压电介质材料和n型压电半导体材料构成的周期杆,分别构建压电介质杆和压电半导体杆的状态方程;通过界面连续条件给出元胞两侧状态向量(轴向位移、电势、轴向应力和轴向电位移)的传递关系,并利用Bloch理论得到压电-压电半导体周期杆的色散方程。数值研究结果表明:初始电子浓度、元胞内压电半导体相的长度比和杆半径对该周期结构的带隙结构有调控作用;当初始电子浓度、杆长比、杆的半径增加时,第一带隙均会下移。该研究结果为基于压电半导体周期结构的器件设计提供了理论指导。  相似文献   

10.
针对旋转挤压成形易产生折叠缺陷的问题,利用刚塑性有限元法对镁合金内筋壳体旋转挤压成形过程进行了数值模拟,对比分析了在不同形状的凸模作用下变形区金属流动规律、节点应变和折叠角,探讨了折叠产生的原因.结果表明:折叠缺陷是由于凸模间隙区金属受凸模轴向-周向加载产生凸起,凸起金属受凸模周向加载作用与壳体内侧壁金属汇流;变形区凸起金属轴向流动速度沿径向方向呈递减趋势时无折叠缺陷产生,反之则产生折叠缺陷;增大过度圆角和梯形工作带设计可以避免折叠缺陷产生.  相似文献   

11.
为了研究腐蚀对LYl2-CZ铝合金板性能的影响,采用有限元法对航空结构中的主体材料LYl2-CZ铝合金板进行了不同程度腐蚀后的动力特性分析,得到其在不同腐蚀损伤后的固有频率.结果显示,均匀腐蚀造成板的固有频率显降低,而局部坑蚀对固有频率影响不大.最后通过对板上随机分布有不同深度腐蚀坑进行动力响应分析,发现腐蚀深度对其坑底部的主应力影响比较大,一般随着腐蚀坑的深度增加而增大.  相似文献   

12.
为了研究砂岩的蠕变特性,利用全自动三轴伺服仪对砂岩试样进行10 MPa围压下的常规三轴试验和蠕变试验。为有效描述蠕变全过程,提出了一种含分数阶导数的非线性蠕变模型并进行验证。结果表明:在蠕变衰减、稳定阶段,试样环向蠕变速率和轴向蠕变速率比较接近;在蠕变加速阶段,试样的蠕变速率迅速增大,环向较轴向先发生加速蠕变,且环向加速蠕变速率更大,稳定蠕变速率随着应力水平的增大而增大,环向稳定蠕变速率增幅较轴向大,可见环向蠕变速率受应力水平影响更大,建立的含分数阶导数的非线性蠕变模型能较好模拟蠕变全过程,具有较高的准确性。  相似文献   

13.
被剪钻杆断口的变形程度是评价剪切闸板防喷器剪切性能的重要依据之一,直接关系到钻杆的再循环利用和作业效率,而被剪钻杆断口凸起高度又是断口变形程度的重要方面。为了对被剪钻杆断口凸起高度做出合理评估,以钻杆为研究对象,依据运动学基本规律建立剪切闸板的运动方程,综合考虑作业参数,以坐标转换公式的矩阵形式和滑移线理论为基础,分别给出由单剪切点导致被剪钻杆断口在任意时刻及最终凸起高度的理论预测式,继而确定断口凸起位置并建立冲击块导致被剪钻杆断口凸起高度的理论评估模型。用剪切闸板防喷器进行剪切CT90管的剪切试验,获得CT90管的断口数据对评估模型进行验证,结果表明所建立的评估模型与剪切试验获得的断口凸起高度的相对误差在10%以内,具有较高的可靠性和适用性。分析V型角、刃口倒角等剪切闸板冲击块关键结构参数及钻杆结构尺寸对被剪钻杆断口凸起高度的影响规律,研究表明钻杆断口凸起高度随着V型角的增大而增加,随着刃口倒角的增大呈波浪形变动,且波谷逐步增加,刃口倒角在20 °时,钻杆断口凸起高度最小,钻杆断口凸起高度随着剪切点至V型角中心点的长度增加而增加。在满足井控要求的情况下,设计剪切闸板时,冲击块的刃口倒角以20 °为宜,V型角越小越好并尽可能地缩短剪切点至V型角中心点的长度。钻杆断口凸起高度随着钻杆内径及壁厚的增大而增大,在满足钻采的要求下,钻杆宜选用小通径薄壁钻杆。  相似文献   

14.
在分析半环面无级变速器工作原理的基础上,建立了接触压力的计算公式,以赫兹接触理论为指导,给出了接触应力的计算公式。以某公司的样机为实例,讨论了接接触应力的变化规律、影响因素。研究表明:在轴向力不变的情况下,接触压力和接触应力与接触点的位置有关,接触位置越靠近锥盘轴线,则接触压力和接触应力越大,接触椭圆的长轴越大,接触椭圆的短轴越小;接触应力随环面半径和环腔半径的增大而减小,随半锥角的增大而减小;接触应力对环腔半径的改变敏感度高,对环面半径和半锥角的改变敏感度低;将锥盘与滚轮设计为线接触,可大幅降低接触应力。本文的研究成果可为半环面型无级变速器设计提供理论参考。  相似文献   

15.
目的初步了解圆截面CFRP-钢管混凝土受弯构件的静力性能,为进一步的研究奠定基础.方法在8根圆CFRP-钢管混凝土受弯构件静力试验的基础上,分析钢管和CFRP筒的环向和纵向的协同工作,环向应变分布规律,屈服荷载时纵向应变比较。平截面假定,挠度以及纵向CFRP层数对承载力提高率的影响等问题.结果从加载之初直到最大承载力,钢管和CFRP筒的环向应变基本一致,纵向应变也基本一致。表明两种材料在环向和纵向都可以协同工作;纵向受压最大点的环向拉应变最大。纵向受拉最大点的环向压应变最大,其余点的环向应变介于二者之间;对于同一系列的试件。同一荷载下钢管的纵向应变随着纵向CFRP层数的增大而减小,但试件达到屈服荷载时的应变值却十分接近.结论从加载之初直到大约0.7倍的极限承载力。钢管纵向应变沿截面高度的分布符合平截面假定;在同一荷载下,挠度随着纵向CFRP层数的增大而减小,纵向CFRP可以显著提高试件的刚度;对于同一系列的试件。承载力提高率随着纵向CFRP层数的增大而增大.  相似文献   

16.
在局部变形理论基础上,对全长粘结型锚杆锚-浆界面破坏类型的锚固机理进行分析研究。将注浆体与围岩视为相对位移为零的稳定体,通过确定其主要影响系数r、ks分析得到锚-浆界面的剪应力与轴向荷载的双曲线应力分布形式。通过Flac 3D数值模拟技术和实验算例对其进行对比分析,证明其合理性。定义虚拟系数T用来描述锚杆与注浆体界面材料性质,并对其影响参数进行分析,发现锚杆长度在一定范围内可以增强锚固效果,但过度增加锚杆长度对杆体剪应力与轴向荷载影响较小;随着锚杆半径增大,锚浆界面剪应力峰值呈非线性减小,作用的范围增加,为避免产生应力集中现象,应避免使用半径较小的锚杆;虚拟系数T可以描述锚浆界面的相差度,T值增大,锚浆界面的剪应力增大,作用的均匀度及轴向荷载作用范围降低明显,可通过取合适的T值使锚固效果最佳。T值对锚杆锚固机制的影响较为明显。  相似文献   

17.
为研究钢筋套筒灌浆搭接接头的受力机理,进行了36个该接头拉伸试验,考察了其破坏形态、承载力、延性、套筒纵向及环向应变等。试验结果表明,当相对搭接长度相同时,试件的屈服、极限荷载随钢筋直径增大而提高;搭接长度越长,试件初始刚度、延性越好;加载前期套筒为纵向受拉、加载后期套筒纵向受压;随着搭接长度的增大,套筒纵向由拉变压的转换荷载逐渐增大;加载过程中近钢筋侧套筒纵向拉应变随着搭接长度增大而增大,极限荷载时远钢筋侧套筒纵向压应变随着搭接长度增大而变小;加载前期,套筒中部环向应变值大于边缘截面环向应变值;极限荷载时,由于端部灌浆料脱落,套筒边缘截面环向应变值小于中部截面环向应变值;细观分析了搭接接头的传力路径、力学机理,基于钢筋-混凝土黏结应力分布曲线,分析套筒纵向应力分布及发展过程,得出套筒加载前期为纵向受拉、加载后期为纵向受压,与试验结果吻合;基于试验数据,拟合出了接头极限黏结强度公式,提出套筒临界搭接长度公式。研究成果可为接头应用奠定理论基础。  相似文献   

18.
目的了解圆CFRP-钢管混凝土偏压构件的静力性能,为理论计算提供依据.方法以12根圆CFRP-钢管混凝土偏压构件的静力试验为基础,对其展开理论分析.结果发现从加载之初直到最大承载力,钢管和CFRP筒在纵向和环向都可以协同工作,环向应变沿构件截面周边分布不均匀;纵向受压最大点的钢管存在内力重分布过程:在加载初始阶段,钢管以承受纵向压力为主,进入屈服阶段后,钢管以承受环向拉力为主;纵向受拉最大点的钢管对核心混凝土没有套箍作用.结论从加载之初直到最大承载力,沿截面高度的钢管纵向应变分布符合平截面假定;在其他参数相同的情况下,侧向挠度随着偏心距或构件长度的增大而增大;在其他条件相同的情况下,同一载荷下的纵向应变随着偏心距或试件长度的增大而增大,但达到屈服载荷时的纵向应变值却十分接近.  相似文献   

19.
为研究半灌浆套筒连接件受灌浆缺陷影响的规律,对含端部、中部和均布灌浆缺陷及灌浆饱满的连接件进行单向拉伸试验,通过有限元软件分析研究灌浆缺陷类型和缺陷尺寸对连接件拉伸强度的影响。结果表明:灌浆缺陷导致半灌浆套筒连接件拉伸强度降低,相同尺寸的均布缺陷对C25 连接件拉伸强度影响最大,中部缺陷次之,端部缺陷最小。随着灌浆缺陷长度的增大,含灌浆缺陷连接件的破坏形态均由钢筋拉断破坏转变为钢筋拔出破坏。并且,连接件屈服强度和极限抗拉强度的降低速率与灌浆缺陷类型相关,含均布缺陷的连接件降低最快,含端部缺陷的连接件最慢。为确保C25 半灌浆套筒连接件满足I 级接头要求,含端部、中部和均布灌浆缺陷的连接件钢筋最小锚固长度分别为125、150 和175 mm。  相似文献   

20.
在圆棒试样上加工出不同类型的缺口来模拟焊接凹坑,并采用慢应变速率(SSRT)应力腐蚀试验研究含该缺陷的Q345R钢焊接接头在湿硫化氢环境下的应力腐蚀行为.结果表明:在204,612mg/L的湿H2S环境中,焊缝区无缺口试样的应力腐蚀敏感性明显小于含缺口试样.含缺口试样在拉伸过程中,受湿硫化氢和应力集中的协同作用,随焊缝区试样缺口半径的增大,其对应的应力腐蚀敏感性指数逐渐减小,断裂所需时间和延伸率均逐渐增大;断口均呈现明显的应力腐蚀断裂特征;相同缺口半径的试样,在612mg/L湿H2S环境中的应力腐蚀敏感性较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号