首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Freezing is a very well established food preservation process that produces high-quality nutritious foods that offer the advantage of a long storage life. However, freezing is not suitable for all foods, and freezing does cause physical and chemical changes in many foods that are perceived as reducing the quality of the thawed material. Many innovative freezing processes are currently being researched and developed throughout the world to overcome these problems. One of these is dehydrofreezing. Dehydrofreezing is an adjunct to freezing in which a food is first dehydrated to a desirable moisture content and then frozen. It is particularly suited to fruits and vegetables. Since fresh fruits and vegetables contain more water than meat, and their cellular structure is less elastic, they are prone to more damage during freezing than meat. Removing some of the water prior to freezing theoretically allows the ice crystals to form and expand without damaging the cellular structure. Reducing the water content prior to freezing also has the potential to reduce the freezing time, the initial freezing point, and the amount of ice formed within the product. Despite being often cited as a new, novel or emerging technology, the concept of dehydrofreezing was developed in the 1940s. However, it has remained a niche process being commercially applied to products such as potatoes, carrots, and onions. In recent years there has been renewed interest in dehydrofreezing, and this review looks at the most recent innovations in dehydrofreezing research.  相似文献   

2.
速冻食品中冰晶的研究进展   总被引:1,自引:0,他引:1  
速冻技术可有效保持食品的新鲜度,但由速冻带来的"副产物"冰晶会对食品内、外部造成破坏,导致营养物质流失,外观口感变差。针对冰晶产生的机理,检测冰晶的方法,影响冰晶体形成的因素,控制冰晶体生成的方法以及将来发展方向等方面进行了论述。目的在于通过对冰晶的了解,改进现有方法,提高速冻食品的品质。  相似文献   

3.
冷冻是一种重要的食品保藏技术,但冻结也会引起食品品质的变化。作为一项高新加工技术,超声辅助冷 冻技术可以加快冷冻速率,减小冰晶的尺寸,进而改善冷冻食品的品质。本文主要论述了超声辅助冷冻技术的作用 机制及对冰结晶形成的影响,同时综述了超声辅助冷冻技术对食品品质的影响及食品冷冻中常用的工艺参数。最 后,展望了超声辅助冷冻技术的发展方向,为超声辅助冷冻技术在食品中的应用提供理论支持。  相似文献   

4.
Freezing usually causes cell and tissue damage in frozen fruits. This study attempted to use a combined method of xenon hydrate formation and freezing (CXF) for the preservation of apple parenchyma tissue and to compare it with the freezing alone process (FAP). CXF included two steps. The first step was to initiate a certain amount of xenon hydrate by introducing the apple parenchyma tissue to the xenon gas at 1.0 MPa and 1 °C for 0, 1, 2, 3, 4, 5, 6 and 7 d. It was found that the amount of xenon hydrate in apple parenchyma tissue increased with storage time and 2 d was optimum to obtain the certain amount of xenon hydrate. In the second step, the sample with optimum xenon hydrate formation was frozen at − 20 °C. The results showed that CXF was more effective in maintaining firmness, turgor pressure, and cell membrane integrity of the apple parenchyma tissue than FAP. A typical restricted diffusion phenomenon which indicates that water molecules are maintained in the apple parenchyma cells was found in the CXF samples, while the FAP samples showed an unrestricted diffusion phenomenon. In addition, firmness, turgor pressure, cell membrane integrity, and restricted diffusion phenomenon of the CXF samples were similar to those of the fresh samples. The CXF could preserve the apple parenchyma tissue because of the bulk water inside the cells and the water surrounding the cells which transformed to ice crystals is limited. Thus, cell and tissue damage due to the formation of ice crystals was reduced. The obtained results indicated that the CXF is effective for the preservation of the apple parenchyma tissue.Industrial relevanceThere has been an attempt to improve the quality of frozen fruit by using innovative techniques, in opposition to simply freezing. This present work proposed xenon hydrate formation for the reduction of bulk water before freezing in order to reduce freezing damage due to a large amount of ice crystal formation. The combined method of xenon hydrate formation and freezing has been proved to be able to reduce cell membrane damage usually occurring in frozen fruit. Thus this new technique has potential to be used for improving the quality of frozen fruit. The xenon hydrate formation is considered as an innovative technique for the preservation of fruit, which is expected to be useful for the frozen food industry.  相似文献   

5.
Over the recent decades,protein oxidation in muscle foods has gained increasing research interests as it is known that protein oxidation can affect eating quality and nutritional value of meat and aquatic products. Protein oxidation occurs during freezing/thawing and frozen storage of muscle foods, leading to irreversible physicochemical changes and impaired quality traits. Controlling oxidative damage to muscle foods during such technological processes requires a deeper understanding of the mechanisms of freezing-induced protein oxidation. This review focus on key physicochemical factors in freezing/thawing and frozen storage of muscle foods, such as formation of ice crystals, freeze concentrating and macromolecular crowding effect, instability of proteins at the ice–water interface, freezer burn, lipid oxidation, and so on. Possible relationships between these physicochemical factors and protein oxidation are thoroughly discussed. In addition, the occurrence of protein oxidation, the impact on eating quality and nutrition, and controlling methods are also briefly reviewed. This review will shed light on the complicated mechanism of protein oxidation in frozen muscle foods.  相似文献   

6.
The aim of this study was to find out whether the ice crystal size of a starch gel, a model food system, could be reduced by high-pressure freezing compared with freezing at atmospheric pressure. The size and number of pores in thawed gels was determined by light microscopy and image analysis, and was taken as an indirect measure of ice crystals formed during the different freezing processes studied.The pore size and the total area occupied by the pores were clearly reduced by high-pressure freezing at 150–240 MPa compared with freezing at atmospheric pressure at the same cooling rate. The pore size in the high-pressure (nor in the atmospheric) frozen gels did not increase during a storage time of 3 months at − 24 °C (still air) at atmospheric pressure.Industrial relevanceHigh-pressure processing at subzero temperatures is not yet industrially applied. More evidence on the benefits of high-pressure freezing or thawing on the quality of real food materials as well as development of processing equipment is needed for commercialization of the processes. This study demonstrates that the pore size of frozen and thawed starch gels can be reduced by high-pressure freezing compared with freezing at atmospheric pressure. The reduced pore size was assumed to be a result of smaller ice crystals formed in the high-pressure freezing process. Based on this study, no conclusions can be drawn on the possibility of high-pressure freezing to improve the quality of real foods of a more complex composition and structure.  相似文献   

7.
鱼糜在冷冻贮藏过程中冰晶的形成是导致其品质降低的根本原因.鉴于现有抗冻剂的安全性和经济性,单纯通过抗冻剂来抑制冰晶形成,或许无法最大程度地提高鱼糜的冻藏品质.与抗冻剂的作用对象不同(控制冰晶形成),冷冻稳定剂可作为现有冷冻保护策略的重要补充,通过增强鱼糜组分的稳定性,以抑制其在冷冻过程中的各种生化反应,从而达到鱼糜冷冻...  相似文献   

8.

冷冻是保藏食品常用且有效的方法之一。但在传统冷冻过程中,生成的大冰晶会破坏食品组织,导致品质劣变,因此如何利用新型冷冻技术改善冷冻食品的品质成为研究的热点。磁场辅助冷冻技术是一种新型的调控冰晶成核技术。本文综述了磁场调控冰晶成核的机制,重点阐述了磁场冷冻在果蔬、畜禽肉、谷物等食品领域的应用。综述结果发现,虽然磁场冷冻技术在多种食品领域有所应用,但目前研究主要集中于磁场对冷冻食品品质及冷冻参数的影响,而磁场辅助冷冻调控冰晶成核的机制目前尚无统一结论,仍需科研者进一步系统地研究揭示磁场冷冻的作用机制,推动磁场辅助冷冻技术在食品领域的应用,促进冷冻食品品质的提升。

  相似文献   

9.
BackgroundFrozen dough technology could effectively extend the shelf life of bread to ensure the freshness, which is widely used and gradually replace the traditional bread production. However, during the production and storage of frozen dough, a series of problems could take place, such as inhibition of yeast activity, damage of the structure of the dough, leading to the deterioration of dough quality.Scope and approachThis review summarizes the factors that affect the final quality of frozen dough, including yeast activity, dough structure and dough properties. Some effective methods for improving freeze tolerance of yeast, dough structure and dough properties are discussed, including addition of various additives, use of genetic engineering technique, optimization of freezing and storage conditions, and employment of novel freezing technology.Key findings and conclusionsThe addition of additives can not only improve the freeze tolerance of yeast but also maintain the rheological and thermophysical properties of dough. Through the modification of gene, freeze tolerance and fermentation ability of yeast can be improved. Optimizing freezing and storage conditions ensures the activity of yeast as well as dough network structure so that freezing damage due to ice crystals can be minimized. In addition, novel freezing technology such as ultrasound-assisted freezing can simultaneously accelerate the freezing process as well as generate fine and uniform ice crystals, thus protecting dough network structure.  相似文献   

10.
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.  相似文献   

11.
芮李彤  刘畅  夏秀芳 《食品科学》2023,44(5):187-196
低温冷冻是最古老、应用最广泛和最经济有效的肉类食品保鲜方法,但肉类食品经过冻结、冻藏和解冻后,其中80%的水分经历水-冰-水两次相变,冰晶的形成以及后续冰晶的融化会破坏肌细胞结构,使肌肉主要成分如蛋白质和脂肪发生氧化,导致冷冻肉类食品保水性降低、颜色变暗、组织软塌和营养价值减少或丧失。因此,本文拟从水-冰-水动态变化角度概述冰晶的形成和生长过程(冰晶的成核、生长和重结晶);分析不同温度和过饱和度下冰晶的形态、冻融引起肌肉中发生水-冰-水动态变化的过程;重点综述水-冰-水动态变化迫使冷冻肉微观结构、保水性、氧化稳定性(脂肪氧化、蛋白质氧化和构象改变)以及感官品质(质构、色泽和风味)发生劣变的机理;简述目前一些提升冷冻肉类食品品质的新兴冷冻技术(超声波技术、高压技术、电磁场技术以及添加抗冻剂),为提高冷冻肉类食品品质及工业化生产提供科学理论依据。  相似文献   

12.
速冻食品的冰晶形态及辅助冻结方法研究进展   总被引:1,自引:0,他引:1  
文章简述了食品速冻技术以及不同冻结速度下形成的冰晶形态及观测冰晶的方法,综述了压力辅助冻结、电场辅助冻结以及磁场辅助冻结等技术在近几年的研究进展。直接法能直接观察到冻结过程形成的冰晶,而间接法则是通过观察冻结后冰晶在食品内部留下的间隙来分析冰晶特征。压力辅助冻结能提高过冷度,在压力释放时水分瞬间冻结,使形成的冰晶细小且分布均匀;电场辅助冻结能降低成核温度促使形成更小尺寸的冰晶;磁场辅助冻结能增强氢键抑制冰晶的生长,3种辅助冻结方式有利于提高冷冻食品的品质,具有良好的应用前景。  相似文献   

13.
Imaging food freezing using X-ray microtomography   总被引:1,自引:0,他引:1  
X‐ray micro‐computed tomography (X‐ray micro‐CT) has been applied to visualise ice crystal structures formed during freezing of a number of foods. Materials were frozen unidirectionally at ?5 °C and then freeze‐dried to remove the ice crystal structure and leave voids that can be measured by the X‐ray. The system reconstructs the 3‐D image based on a set of 2‐D images, and is capable of micrometre‐scale visualisation. This study demonstrates the capability of the technique to characterise the internal ice crystal microstructure of a range of frozen materials; meat, fish, chicken, potato, cheese and carrot. Results show the voids corresponding to the ice crystals formed within these materials at different directions to the heat flux and various axial positions. Electron microscopy of the same materials, both fresh and frozen at ?5 °C, indicates the same shape of voids seen by the tomographic technique. Ice crystal parameters such as size, area and width can be quantified by the technique. Ice crystals in carrot were larger than in the other materials, while cheese and potato had the lowest values. The ice crystal distribution of all the experimental materials varied with axial distance from cooling surface; the closer the measurement was to the cooling surface, the smaller the crystal size. The results demonstrate that X‐ray micro‐CT might be useful in the analysis of frozen foods.  相似文献   

14.
新技术在食品冷冻过程中的应用   总被引:2,自引:0,他引:2  
文中对超声冷冻技术、高压冷冻技术、冰核活性细菌和冰核活性蛋白及抗冻蛋白在食品冷冻过程中的应用作一介绍。  相似文献   

15.
The objective of this study was to use a new self-cooling laboratory system for carrying out the pressure shift freezing (PSF) and evaluate the influence of PSF at 150 MPa on the microstructural properties of largemouth bass relative to liquid immersion freezing (LIF) and conventional air freezing (CAF). CAF, LIF and PSF showed average total freezing times of 176 ± 7.4, 65.3 ± 6.8 and 23.2 ± 3.1 min, and the cross sectional area of ice crystals in the muscle were 1002 ± 778, 501 ± 248 and 143 ± 50.6 μm2, respectively, demonstrating a significant reduction in crystal size to be associated with PSF. It was observed that damage caused by the ice crystals during the freezing to the muscle microstructure was irreversible. The thawing and cooking losses of largemouth bass after the freezing were lower for PSF as compared to the other two freezing methods. PSF reduced the damage to myocytes and resulted in lower drip loss due to reduced microstructure disruption due to their small ice crystals, thereby maintaining the muscle tissue to better retain the fluids. Color and texture properties were less affected by PSF.Industrial relevanceFreezing is the most used preservation method for aquatic products. Rapid freezing results in better texture retention while the slow freezing damages the product texture because of the formation of extracellular large ice crystals developed during the freezing process. Thus, the nature of freezing affects the quality of frozen foods. Successful freezing processes aim at employing rapid freezing conditions which result in the formation of small ice crystals. Pressure shift freezing (PSF) is a novel technique with advantages of high degree of super-cooling, short phase transformation time, and results in very small ice crystals. This study makes use of a laboratory self-cooling system to carryout PSF of largemouth bass. This cooling system overcomes the limitation of previous studies on PSF which are expensive, limited to small size and impractical for commercial exploitations. The cooling system employed in this study can be easily adapted to large-scale production of PSF aquatic products. Test results provide a basis for the commercial exploitation of PSF for largemouth bass and such other aquatic foods for driving the quality advantage.  相似文献   

16.
在冷链流通过程中, 对新鲜水产品进行冷冻处理能够大大提高其保质期。然而, 传统的冷冻和解冻方法有传热效率低、耗时较长的缺陷, 且难以控制冰晶对食品原料的损伤。所以冷冻水产品经常会面临一系列的质量问题, 如质构劣化、蛋白质变性、持水能力下降等。因此有必要采用高效的冷冻/解冻技术以防止品质劣变。相比于传统方法, 基于物理场(如高压、超声、电场等)的新型冷冻和解冻技术具有高冷冻/解冻速率、低能耗、对产品品质维持更好等优点。本文综述了近年来物理场技术在水产品中的应用, 分析了它们各自的原理、特点、缺陷及未来的发展趋势, 为这些新技术在水产品冷冻冷链中的应用提供相关参考。  相似文献   

17.
To design and optimize high pressure processes at low temperatures, a quantification of the effects of different processing steps on the food structure is required. Beside pressure-shift freezing, the processes of freezing to ice III and ice V, as well as storage at −27 °C and 250 MPa up to 24 h (metastable liquid state of water) of potato samples were examined. Analyses of the structural changes of the plant tissue included impedance measurements, texture analysis, color measurements and the evaluation of the optical appearance. Storage at subzero temperatures without phase transitions resulted in low membrane damage; however, cell lysis was triggered. Freezing to ice III resulted in the lowest damaging effect on the tissue compared to the other phase transition processes investigated. Samples frozen to ice V and pressure-shift frozen were more deteriorated compared to those frozen to ice III. However, considerable improvements compared to conventional freezing were found. The direction of solid–solid phase transitions (phase transition of ice I to ice III or phase transition of ice III to ice I) influenced the result of high pressure–low temperature processing significantly.Industrial relevanceIt was previously shown that pressure supported phase transitions of ice I like pressure shift freezing are able to preserve the fragile stucture of biological samples like food better than conventional freezing. The present study extends the knowledge of pressure supported phase transitions to a higher pressure domain with the participation of other ice modifications. The authors demonstrate the influences of high pressure phase transitions of water on plant tissue material depending on the processing conditions. The study opens the way to new industrial processing concepts based on high pressure low temperature applications.  相似文献   

18.
Abstract

Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.  相似文献   

19.
High-pressure shift freezing has been proposed as a method to produce frozen food with smaller ice crystal size and, consequently, with reduced tissular damage and higher overall quality. The fate of this initially improved crystal size distribution, decisive for the long-term value of this procedure, is unclear. The recrystallization behaviour of partially frozen aqueous solutions, as food models, is here compared with that of similar classically frozen samples. A microscopic observation cell has been specially designed for this purpose. The temporal evolution of high-pressure shift frozen ice crystals has been fitted to different mechanism models and is found to be similar within experimental error to that of classically frozen samples. However, differences in the shape evolution of crystals have been detected, which can be ascribed to small differences in the initial distribution. The implications of these observations for the long-term storage of frozen food are discussed.  相似文献   

20.
水产品具有丰富的营养价值及其特殊的口感和风味,丰富了人们的日常饮食,使得对水产品的需求日益增加。冷冻是水产品保藏的手段之一,冷冻贮藏方式对水产品运输和保藏具有重要意义,但产品在冷冻过程中容易受到冰晶带来的机械损伤,造成贮藏过程中品质劣变,降低营养价值,所以水产品在冷冻时,需采用先进的冷冻技术或保鲜剂细化冰晶,使冰晶分布均匀,降低损伤,维持水产品在贮藏过程中的品质,从而达到在大批量流通过程中保持良好的品质。因此,该文通过对新型冷冻技术与传统冷冻技术对比、影响冷冻水产品品质的因素和冷冻水产品品质保持三方面进行阐述,总结了这三方面的发展现状以及取得的成果,并对未来冷冻水产品冷冻保鲜技术进行了展望,以期为未来水产品的贮藏保鲜研究提供充足的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号