首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Myoelectric signals were detected from the tibialis anterior muscle of 5 subjects with a quadrifilar needle electrode while the subjects generated isometric forces that increased linearly with time (10% of maximal voluntary contraction/s) up to maximal voluntary level. Motor unit firing rates were studied as a function of force throughout the full range of muscle force output. The relationship between force and firing rate was found to contain three distinct regions. At recruitment and near maximal force levels, firing rates increased more rapidly with force than in the intermediate region. Furthermore, in the regions with rapid increases, the rate of change of firing rate was correlated to the recruitment threshold, with higher recruitment threshold motor units displaying greater rates of change. In the intermediate region, all motor units had similar rates of change of firing rate. A weak positive correlation was found between initial firing rate and recruitment threshold. Firing rates of motor units at any instant were found to be ordered according to the recruitment order: at any given time in the contraction motor units with lower recruitment thresholds had higher firing rates than units with higher recruitment thresholds. Firing rates of all motor units were observed to converge to the same value at maximal forces. Mechanisms underlying motor unit recruitment and firing rate modulation are discussed in the context of a conceptual model.  相似文献   

2.
1. The activity of 40 triceps brachii motor units was recorded from the dominant arms of 9 healthy adult volunteers (age 27.8 +/- 4.4 yr, mean +/- SD) during a fatigue task that included both isometric and anisometric contractions. The fatigue task lasted 8.3 min and consisted of 50 extension and 50 flexion movements of the elbow. Each movement (40 degrees in 0.8s) was separated by an isometric contraction. A constant load resisting extension of 17.7 +/- 3.0% of maximal voluntary contractions (MVC) was applied throughout the task. This paradigm enabled the direct contrast of motor-unit discharge behavior during the different types of fatiguing contractions. 2. Motor-unit behavior was examined to determine the relative contribution of two mechanisms for optimizing force production under fatiguing conditions: recruitment of motor units and modulation of motor-unit discharge following recruitment. Threshold torques for motor-unit recruitment thresholds were determined by ramp-and-hold isometric contractions. Motor-unit discharge was evaluated during the fatigue task by contrasting the number of motor-unit potentials (spikes) per contraction for concentric eccentric, and isometric contractions. 3. The fatigue task resulted in a 30 +/- 12% decline in the mean MVC of elbow extension. Recruitment of nine new motor units (23%) was evident during the fatiguing extension movements, often within five to seven movements (i.e., within 25-35 s). Each newly recruited motor unit had the largest recruitment threshold torque in that experiment. 4. Analysis of the motor units that were active from the beginning of the fatigue task revealed that the mean number of motor-unit spikes per contraction increased, or remained constant as fatigue ensued, yet for the majority of motor units it increased or remained constant. None of the newly recruited motor units demonstrated decreased number of mean spikes per contraction after recruitment. Further, concurrently active motor units displayed different discharge behavior in two-thirds of the subjects. It is proposed that if the neural drive to the muscle is distributed uniformly upon the motoneuron pool, peripheral feedback from the exercising muscle may modulate specific motoneuron discharge levels during fatigue.  相似文献   

3.
The relationship between macro-EMG (electromyography) and motor unit recruitment threshold was studied in the first dorsal interosseous (FDI) muscle of normal young and aged subjects. During voluntary isometric contraction, motor unit action potentials (MUAP) were collected by a special quadrifilar electrode and decomposed to each MUAP train (MUAPT) using an EMG signal decomposition technique. Macro-EMG was obtained from the electrode shaft, then triggered and averaged for each MUAPT. A positive linear correlation was observed in both the young and aged subjects. However, the correlation coefficients were significantly lower in the aged individuals than in the young individuals.  相似文献   

4.
Daily preferential use was shown to alter physiological and mechanical properties of skeletal muscle. This study was aimed at revealing differences in the control strategy of muscle pairs in humans who show a clear preference for one hand. We compared the motor unit (MU) recruitment and firing behavior in the first dorsal interosseous (FDI) muscle of both hands in eight male volunteers whose hand preference was evaluated with the use of a standard questionnaire. Myoelectric signals were recorded while subjects isometrically abducted the index finger at 30% of the maximal voluntary contraction (MVC) force. A myoelectric signal decomposition technique was used to accurately identify MU firing times from the myoelectric signal. In MUs of the dominant hand, mean values for recruitment threshold, initial firing rate, average firing rate at target force, and discharge variability were lower when compared with the nondominant hand. Analysis of the cross-correlation between mean firing rate and muscle force revealed cross-correlation peaks of longer latency in the dominant hand than in the nondominant side. This lag of the force output with respect to fluctuations in the firing behavior of MUs is indicative of a greater mechanical delay in the dominant FDI muscle. MVC force was not significantly different across muscle pairs, but the variability of force at the submaximal target level was higher in the nondominant side. The presence of lower average firing rates, lower recruitment thresholds, and greater firing rate/force delay in the dominant hand is consistent with the notion of an increased percentage of slow twitch fibers in the preferentially used muscle, allowing twitch fusion and force buildup to occur at lower firing rates. It is suggested that a lifetime of preferred use may cause adaptations in the fiber composition of the dominant muscle such that the mechanical effectiveness of its MUs increased.  相似文献   

5.
Several investigators have studied the deficit in maximal voluntary force that is said to occur when bilateral muscle groups contract simultaneously. A true bilateral deficit (BLD) would suggest a significant limitation of neuromuscular control; however, some of the data from studies in the literature are equivocal. Our purpose was to determine whether there is a BLD in the knee extensors of untrained young male subjects during isometric contractions and whether this deficit is associated with a decreased activation of the quadriceps, increased activation of the antagonist muscle, or an alteration in motor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (delta 3%) and maximal rate of force generation (delta 2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 +/- 0.28 vs. 2.6 +/- 0.24 mV) and coactivation (0.17 +/- 0.02 vs. 0.20 +/- 0.02 mV) were also not different. Similarly, the ratio of force to EMG during submaximal UL and BL contractions was not different. Analysis of force production by each leg in UL and BL conditions showed no differences in force, rate of force generation, EMG, motor unit firing rates, and coactivation. Finally, assessment of quadriceps activity with the twitch interpolation technique indicated no differences in the degree of voluntary muscle activation (UL: 93.6 +/- 2.51 Hz, BL: 90.1 +/- 2.43 Hz). These results provide no evidence of a significant limitation in neuromuscular control between BL and UL isometric contractions of the knee extensor muscles in young male subjects.  相似文献   

6.
The present work was carried out to analyse the properties and behaviour of Tibialis anterior motor units (MUs) during voluntary contractions in humans. A total of 528 single MU mechanical properties was recorded in 10 subjects by means of the spike-triggered averaging (STA) technique. MU recruitment thresholds and discharge frequencies were recorded during linearly increasing maximal voluntary contraction (MVC). The results indicate a mean (+/- SD) MU torque of 25.5 +/- 21.5 mN.m. and a mean time-to-peak of 45.6 +/- 13.6 ms. A comparison of the average MU twitch torque with that of the muscle allowed an estimate of about 300 MUs in the Tibialis anterior. A positive linear relationship was recorded between the MU twitch torque and the recruitment threshold. The mean minimal and maximal discharge frequencies of MUs were 8.4 +/- 3.0 Hz and 33.2 +/- 14.7 Hz, respectively. The results of the present work indicate that MU behaviour during voluntary contractions is different in the tibialis anterior and in the adductor pollicis.  相似文献   

7.
The spatiotemporal organization of the mechanically evoked perioral sensorimotor response was sampled from five normal females using a custom-designed linear motor operating under force feedback. Electromyographic activity was sampled from the superior and inferior segments of the orbicularis oris muscle during the production of a visually guided ramp-and-hold lip-rounding task. Brief mechanical inputs of approximately 0.45 N delivered to the left upper lip during the ramp-and-hold task produced a composite myogenic response characterized by phases of excitation and suppression. Modulation of the primary excitatory component (R1) of the mechanically evoked perioral response was found to be highly dependent upon the rate of force recruitment (1 N/s vs. 4 N/s) and the phase of force recruitment (20% vs. 50% vs. 80% of 1 N end-point force). Modulation of later occurring inhibitory (S1) and excitatory (R2) potentials were also found to be dependent upon differences in the rate and phase of force recruitment. The organization of the perioral sensorimotor response is considered in relation to speech motor control and the dynamic organization of neuronal groups subserving perioral sensorimotor activity.  相似文献   

8.
Recruitment of single motor units (SMUs) of the masseter muscle was studied using macro representation (MacroRep) as the indicator of motor unit size. When subjects followed a slow isometric force ramp, units were usually recruited in order of MacroRep size. However, pooling the data from repeated ramps in the same subject resulted in a weak relationship between MacroRep size and force recruitment threshold, probably due to marked variations in the relative contributions of the jaw muscles, and varying levels of cocontraction, in the development of total bite force in each ramp. The force recruitment thresholds of individual SMUs showed marked variability, but recruitment threshold stability was improved when expressed as a percentage of maximum surface electromyographic (SEMG) activity in the ipsilateral masseter. Therefore the SEMG recruitment threshold was concluded to be a more stable and accurate indicator of the SMU's position in the recruitment hierarchy in a given muscle. It was concluded that SMUs in masseter are recruited according to the size principle, and that when investigating recruitment in jaw muscles, SEMG recruitment threshold should be used in preference to force recruitment threshold.  相似文献   

9.
The aim of this experiment was to determine whether elderly persons exhibit reciprocal phasing of muscle activity and scale EMG burst amplitude in the same manner as young people. Seven young and 7 elderly adults performed 30( elbow flexion movements at 800 ms duration to a visual target against varying inertial loads. The elderly were not able to achieve the required movement duration as frequently and spent a greater portion of the movement accelerating than the young. The young and the elderly subjects scaled EMG burst amplitude to the increasing loads in the same fashion, although the elderly subjects coactivated the agonist/antagonist muscles more than did the young subjects and thus did not accelerate the limb as rapidly. We hypothesized that the elderly used coactivation to reduce movement variability, and we developed a single-joint model with two muscles to examine this hypothesis. The model simulation correctly predicted the variability reduction due to coactivation. It appears, however, that this reduces the capability to accelerate rapidly.  相似文献   

10.
To further test the hypothesis that some fixed property of motoneurons determines their recruitment order, we quantified the variation in force threshold (FT) for motoneurons recruited in muscle stretch reflexes in the decerebrate cat. Motor axons supplying the medial gastrocnemius (MG) muscle were penetrated with micropipettes and physiological properties of the motoneuron and its muscle fibers, i.e., the motor unit, were measured. FT, defined as the amount of MG force produced when the isolated motor unit was recruited, was measured from 20 to 93 consecutive stretch trials for 29 motor units. Trials were selected for limited variation in base force and rate of rise of force, which have been shown to covary with FT, and in peak stretch force, which gives some index of motor-pool excitability. Under these restricted conditions, large variation in FT would have been inconsistent with the hypothesis. Analysis of the variation in FT employed the coefficient of variation (CV), because of the tendency for FT variance and mean to increase together. We found that CV was distributed with a median value of 10% and with only 2 of 29 units exceeding 36%. Some of this variation was associated with measurement error and with intertrial fluctuations in base, peak, and the rate of change of muscle force. CV was not significantly correlated with motor-unit axonal conduction velocity, contraction time, or force. In three cases FT was measured simultaneously from two motor units in the same stretch trials. Changes in recruitment order were rarely observed (5 of 121 stretch trials), even when FT ranges for units in a pair overlapped. We suggest that the large variation in recruitment threshold observed in some earlier studies resulted not from wide variation in the recruitment ranking of motoneurons within one muscle, but rather from variation in the relative activity of different pools of motoneurons. Our findings are consistent with the hypothesis that recruitment order is determined by some fixed property of alpha-motoneurons and/or by some unvarying combination of presynaptic inputs that fluctuate in parallel.  相似文献   

11.
Motor unit recruitment patterns were studied during prolonged isometric contraction using fine wire electrodes. Single motor unit potentials were recorded from the brachial biceps muscle of eight male subjects, during isometric endurance experiments conducted at relative workloads corresponding to 10% and 40% of maximal voluntary contraction (MVC), respectively. The recordings from the 10% MVC experiment demonstrated a characteristic time-dependent recruitment. As the contraction progressed both the mean number of motor unit spikes counted and the mean amplitude of the spikes increased significantly (P < 0.01). This progressive increase in spike activity was the result of a discontinuous process with periods of increasing and decreasing activity. The phenomenon in which newly recruited motor units replace previously active units is termed "motor unit rotation" and appeared to be an important characteristic of motor control during a prolonged low level contraction. In contrast to the 10% MVC experiment, there was no indication of de novo recruitment in the 40% MVC experiment. Near the point of exhaustion a marked change in action potential shape and duration dominated the recordings. These findings demonstrate a conspicuous difference in the patterns of motor unit recruitment during a 10% and a 40% MVC sustained contraction. It is suggested that there is a close relationship between intrinsic muscle properties and central nervous system recruitment strategies which is entirely different in fatiguing high and low level isometric contractions.  相似文献   

12.
Low-speed isokinetic exercise has been recommended to exert a maximal contraction and produce greater muscle torque than high-speed exercise in young adults. The purpose of this study was to compare the effectiveness of low- and high-speed isokinetic exercise programs for increasing muscle torque in young and elderly people. Twenty healthy elderly and 20 young subjects participated. The elderly subjects were divided into two groups. One group performed high-speed (300 degrees/s) isokinetic exercise training three times a week for the dominant-side knee extensor and low-speed (60 degrees/s) exercise for the non-dominant side for 6 weeks. The other group was trained using the reverse exercise regime. The training program for the young subjects was the same as that for the elderly groups. All subjects had their knee extensor torque evaluated with an isokinetic test before and at 2-week intervals during the training program. For young and elderly groups, both high- and low-speed isokinetic exercise training increased extensor torque in low- and high-speed tests. For the young group, low-speed exercise effectively improved muscle torque at low and high speeds. The improvement in slow muscle torque was significantly greater than that in fast muscle torque. For the elderly subjects, high-speed isokinetic exercise produced the greatest muscle torque at high speed in the first 2 weeks of training, and demonstrated a sharp increase in muscle torque in the final 2 weeks. Low-speed exercise frequently caused knee stress and the inability of some elder subjects to continue the exercises with maximal effort. Our findings indicate that high-speed exercise may be more appropriate for the elderly, and low-speed exercise may be more appropriate for younger people.  相似文献   

13.
We used transcranial magnetic stimulation in 10 patients with essential tremor and 8 matched healthy subjects. A round stimulating coil was placed over the vertex and electromyographic activity was recorded from the first dorsal interosseous muscle. Paired transcranial stimuli were delivered at interstimulus intervals of 3, 5, 20, 100, 150, and 200 ms. The intensity of the conditioning stimulus was 80% of motor threshold at short and 150% at long interstimulus intervals (ISIs). We also measured the silent period obtained after a single magnetic pulse delivered at 150% of motor threshold during a submaximal muscle contraction. Patients and controls had similar motor threshold and similar latencies. Paired magnetic stimuli given at short and long ISIs at rest, and during a voluntary muscle contraction, elicited similar responses in both groups. The silent period evoked by transcranial magnetic stimulation had a similar duration in patients with ET and controls. In conclusion, these findings suggest that patients with essential tremor have normal cortical motor area excitability.  相似文献   

14.
This study compared the fine control of forces generated by the tongue, lips and fingers in middle-aged adults. The aims were to determine whether (1) the articulatory organs (tongue, lips) and fingers differed in the manner of motor control, (2) force control of the various articulatory organs was similar, and (3) control of forces generated by males was different from that of forces generated by females. The relation among several variables of the ramp-and-hold force contraction and target force level was quantified for the articulatory organs and the fingers in 14 normal individuals (7 males and 7 females). Using visual feedback, participants produced ramp-and-hold compression forces as rapidly and accurately as possible to targets ranging from 0.25 to 2 N. The results showed differences in the profiles of forces generated by the articulatory organs and fingers. In particular, the forefingers were characterized by a greater accuracy of force control and precision of movement, a greater stability of the hold phase, but by slower velocities than the articulatory organs. Motor control of the lower lip differed from that of the upper lip and tongue. Mostly, the lower lip was characterized by a greater precision of contraction, faster development of the force, and greater stability of the hold phase than the upper lip and tongue. Gender was a distinguishing factor in the force task; males were able to produce forces with higher velocities and greater precision than females.  相似文献   

15.
Twenty elderly subjects (70–90 years old) and 20 young control subjects (18–24 years old) underwent three kinds of olfactory testing: absolute thresholds to three odorants (d-limonene, iso-amyl butyrate, benzaldehyde), magnitude matching of these odorants to salt tastes, and odor identification of 30 common substances. For all three odorants elderly subjects' mean threshold significantly exceeded that of the young by about nine-fold for d-limonene, about three-fold for benzaldehyde, and about two-fold for iso-amyl butyrate. These threshold differences predict approximate concentration differences necessary to arouse the same estimated odor strength above the threshold for the elderly and the young. Young subjects also scored better than the elderly in odor identification, even when subjects were given four alternatives from which to select the correct label. Unimpaired olfactory functioning is uncommon in the elderly; correlational tests show that as a group the young have better olfactory ability and show more interindividual uniformity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
In 11 healthy subjects motor-evoked potentials (MEPs) and silent periods (SPs) were measured in the right first dorsal interosseus (FDI) and abductor pollicis brevis muscles (APB): (1) when transcranial magnetic cortex stimulation (TMS) was applied at tonic isometric contraction of 20% of maximum force, (2) when TMS was applied during tactile exploration of a small object in the hand, (3) when TMS was applied during visually guided goal-directed isometric ramp and hold finger flexion movements, and (4) when at tonic isometric contraction peripheral electrical stimulation (PES) of the median nerve was delivered at various intervals between PES and TMS. Of the natural motor tasks, duration of SPs of small hand muscles was longest during tactile exploration (APB 205+/-42 ms; FDI 213+/-47 ms). SP duration at tonic isometric contraction amounted to 172+/-35 ms in APB and 178+/-31 ms in FDI, respectively. SP duration in FDI was shortest when elicited during visually guided isometric finger movements (159+/-15 ms). At tonic isometric contraction, SP was shortened when PES was applied at latencies -30 to +70 ms in conjunction with TMS. The latter effect was most pronounced when PES was applied 20 ms before TMS. PES-induced effects increased with increasing stimulation strength up to a saturation level which appeared at the transition to painful stimulation strengths. Both isolated stimulation of muscle afferents and of low-threshold cutaneous afferents shortened SP duration. However, PES of the contralateral median nerve had no effect on SPs. Amplitudes of MEPs did not change significantly in any condition. Inhibitory control of motor output circuitries seems to be distinctly modulated by peripheral somatosensory and visual afferent information. We conclude that somatosensory information has privileged access to inhibitory interneuronal circuits within the primary motor cortex.  相似文献   

17.
Maximal electromyogram (EMG) levels of the first dorsal interosseus muscle (FDI) were studied during maximal pinching between index finger and thumb at two different wrist angles. Despite the fact that there was no change in the biomechanical conditions for the FDI, the maximal EMG levels of the FDI differed significantly; typically EMG levels were higher while pinching at a maximally flexed wrist angle compared to a maximally extended wrist angle. The stability of the EMG recordings was checked with supramaximal peripheral nerve stimulation. Significant changes in the area of the compound muscle actions potentials (M-waves) were obtained. However, these changes could not explain the observed differences in the maximal EMG levels. Our results suggest that the ease of producing a maximal drive to the FDI muscle depends on the motor task.  相似文献   

18.
Because primate studies provide data for the current experimental models of the human oculomotor system, we investigated the relationship of lateral rectus muscle motoneuron firing to muscle unit contractile characteristics in the squirrel monkey. Also examined was the correlation of whole-muscle contractile force with the degree of evoked eye displacement. A force transducer was used to record lateral rectus whole-muscle or muscle unit contraction in response to abducens whole-nerve stimulation or stimulation of single abducens motoneurons or axons. Horizontal eye displacement was recorded using a magnetic search coil. (1) Motor units could be categorized based on contraction speed (fusion frequency) and fatigue. (2) The kt value (change in motoneuronal firing necessary to increase motor unit force by 1.0 mg) of the units correlated with maximum tetanic tension. (3) There was some tendency for maximum tetanic tension of this unit population to separate into three groups. (4) At a constant frequency of 100 Hz, 95% of the motor units demonstrated significantly different force levels dependent on immediately previous stimulation history (hysteresis). (5) A mean force change of 0.32 gm/ degrees and a mean frequency change of 4.7 Hz/ degrees of eye displacement were observed in response to whole-nerve stimulation. These quantitative data provide the first contractile measures of primate extraocular motor units. Models of eye movement dynamics may need to consider the nonlinear transformations observed between stimulation rate and muscle tension as well as the probability that as few as two to three motor units can deviate the eye 1 degrees.  相似文献   

19.
1. Cross-correlation analysis has been used to quantify the responses of cat soleus tendon organs to repetitive twitch contractions of: (a) different motor units within the muscle, (b) single motor units at different muscle lengths, and (c) single motor units when the pulse-train pattern of stimulation delivered to the motor unit axon was altered. 2. Ib afferents were observed which responded to each of several hundred successive motor unit twitches with identical numbers of spikes and with relatively invariant latencies. 3. The present results show that tendon organs are sensitive to subtle alterations in motor unit twitch wave form and amplitude, and that this sensitivity is reflected in the precise timings of their afferent discharge. 4. Examination of these tendon organ responses indicates that the forces produced by single motor units couples to the receptor capsule are well above threshold. Calculations based on these results, and earlier soleus motor unit and muscle fibre data, suggest that the absolute force threshold for tendon organs may be as little as 4 mg, which is less than the estimated minimum twitch force generated by individual soleus muscle fibres. 5. Considering the number of tendon organs in a muscle, and the likelihood that every motor unit is connected with at least one receptor, the sensitivity of tendon organs ensures that every twitch of every motor unit will be reflected in the population of afferent signals projecting to the spinal cord.  相似文献   

20.
Task-dependent differences in the facilitation of motor evoked potentials (MEPs) following cortex stimulation were studied in a proximal (deltoid) and a distal muscle (abductor digiti minimi; ADM) in 23 healthy subjects during both dynamic and steady contractions of the target muscle under isometric and under nonisometric conditions. In the deltoid, MEP amplitudes were significantly greater if stimulation was performed during dynamic contractions than during steady contractions, despite equal background electromyographic levels just prior to the stimulus. The same task-specific extra facilitation of deltoid MEP amplitudes was also found with magnetic stimulation of the brain stem instead of the cortex in 3 subjects. In the ADM, no such task-dependent extra facilitation of MEPs during dynamic contractions was found. It is concluded that in the deltoid, during dynamic contractions, a greater proportion of the spinal motoneurons is close to depolarization threshold (greater "subliminal fringe") whereas the number of firing motoneurons is similar to that during steady contraction. The lack of task-dependent extra facilitation of MEPs in the ADM is explained by the predominant recruitment principle for force gradation in small hand muscles, which is in contrast to the predominant frequency principle used in proximal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号