首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermooptic coefficients, i.e., the variation of refractive index with temperature (d n /d T ), are analyzed in a physically meaningful model for two series of soda–lime–silica glasses, 25Na2O· x CaO·(75 – x )SiO2 and (25 – x )Na2O· x CaO·75SiO2. This model is based on three physical parameters—the thermal expansion coefficient and excitonic and isentropic optical bands that are in the vacuum ultraviolet region—instead of on consideration of the temperature coefficient of electronic polarizability, as suggested in 1960. This model is capable of predicting and analyzing the thermooptic coefficients throughout the transmission region of the optical glasses at any operating temperature.  相似文献   

2.
The annealing characteristics of Knoop-indented silica and soda–lime–silica glasses were investigated. These glasses were indented using a Knoop indenter in water, and they were annealed at various temperatures below the glass transition temperature. The major diagonal length of the Knoop indentation was measured before and after annealing, and the change of the diagonal length was determined. The change of diagonal length in silica glass was much larger than that in soda–lime–silica glass. This was attributed to the occurrence of more densification around the Knoop indentation in the silica glass. The activation energy of the shrinkage of the Knoop indentation in the silica glass, estimated from the temperature dependence of the relaxation time, was 46 kJ/mol, which was much less than that of viscous flow in silica glass. This suggested that the shrinkage of the Knoop indentation was caused by the structural relaxation of densified glass around the Knoop indentation.  相似文献   

3.
The dispersive and polar surface-energy components, as well as the total surface energy, of tin oxide coatings on soda–lime–silica glass were determined by the Owens–Wendt method. The total surface energy of tin oxide is greater than soda–lime–silica glass and, more importantly, exhibits significantly more-dispersive and less-polar character. These results indicate that tin oxide is significantly more covalent than soda–lime–silica glass. It is postulated that the more-covalent tin oxide coatings increase the bond strength of organic coatings to soda–lime–silica glass. These effects improve the friction-damage resistance of glass surfaces coated with metal oxides and organics, compared with glass surfaces coated with organics only.  相似文献   

4.
The subsurface structure of Vickers indents in soda–lime–silica glass was investigated using confocal microscopy and conventional microscopy. It was determined that the lateral cracks that form beneath the indentation site propagate away from the surface. The median/radial (MR) crack system was found to be semielliptical in shape. The growth of the lateral and MR cracks was found to be codependent such that the depth of the lateral crack limited the depth of the MR crack, and the presence of the MR crack caused deflections in the direction and increased the extent of lateral crack growth.  相似文献   

5.
Density and microstructural evolution of porcelains containing 0–25 wt% soda–lime–silica (SLS) waste glass fired over a range of temperatures from 600° to 1400°C have been investigated. After firing 3 h at 1100°C, batches containing 6.25 wt% SLS glass and 18.75 wt% nepheline syenite flux system attained open-pore closure and a bulk density of 2.40 g/cm3, comparable to results from commercial porcelain after firing at 1200°C. SLS glass softens and melts, conferring early densification and overfiring on porcelains fired at normal commercial firing temperatures. The microstructural evolution examined using XRD, SEM/energy dispersive spectroscopy (EDS), and TEM/EDS revealed formation of a variable composition plagioclase, rounded wollastonite particles, sodium silicates, and tridymite in batches containing SLS glass, in addition to primary and secondary mullites, partially dissolved quartz, and a glassy matrix as found in the waste-free batch. Ca2+ and Na+ from the SLS glass migrate to regions containing the products of clay decomposition to form plagioclase, limiting the extent of mullite crystallization. The presence of a solution rim surrounding quartz and different glass compositions around wollastonite crystals indicate that the system is not in equilibrium, although phases predicted by the Na2O–CaO–SiO2 equilibrium diagram were formed.  相似文献   

6.
The strength and dynamic fatigue behavior of float glass was investigated using biaxial flexure tests. The samples were tested using the ring-on-ring (ROR) biaxial flexure test geometry, and the data analyzed using a conventional two-parameter Weibull distribution. The as-received samples revealed that the air side exhibits a higher characteristic strength (243 MPa) compared with the tin side (114 MPa); fractographic analysis confirmed the presence of significantly larger flaws on the tin side of the specimens, presumably due to contact damage by the rollers in the float glass process. Dynamic fatigue results for as-received and indented samples were performed to assess whether differences in the stress corrosion behavior of float glass exist because of tin penetration. No statistical difference in the stress corrosion exponent was found between the air ( n = 21.7) and tin ( n = 21.6) sides of the float glass. This indicates either that the tin penetration (which extends ∼25 μm) plays no role in altering the stress corrosion susceptibility of float glasses because the native flaw size is larger than the tin penetration depth or that the tests do not have the required sensitivity to distinguish the effect of the tin. Alternative test methods for direct observation of slow crack growth in tin-doped bulk glasses are planned to investigate this in the future.  相似文献   

7.
Reaction equilibrium constants for the sulfate decomposition process, which releases oxygen and sulfur oxide gas in soda–lime–silica glass melts, have been determined. The chemical solubility of SO2, probably in the form of sulfite ions in soda–lime–silica melts, has also been determined. The chemical solubility value of SO2, dissolving as sulfite, ranges between 0.02 and 0.06 wt% SO 3 2− at 1 bar SO2 pressure in the temperature range of 1600–1800 K. Results of square-wave-voltammetry studies and measurements of the temperature-dependent sulfur retention after the fining process of commercial float glass melts and a model soda–lime–silica melt, with 74 wt% SiO2, 16 wt% Na2O, and 10 wt% CaO, are presented. The measured sulfur retention data and the results of the square-wave-voltammetry studies are used to determine the equilibrium constant of the sulfate decomposition reaction in the temperature range of 1600–1800 K. The thermodynamic relations and properties found for sulfate decomposition are used to derive activities of sodium oxide in soda–lime–silica melts. Literature values for sodium oxide activities in these glass melts are rare. In this study, these activities have been determined by a method, based on the measurement of sulfate decomposition equilibrium constants and the residual sulfate concentrations in glass melts, equilibrated with almost pure sodium sulfate galls.  相似文献   

8.
The thermooptic coefficients, i.e., the change in refractive index with temperature (d n /d T ), of four National Institute of Standards and Technology standard reference material (SRM) glasses have been measured over the range of 25° to 125°C. The thermooptic coefficients of all four glasses, NBS-710 (a soda-lime silicate), SRM-711 (a lead silicate), SRM-717 (a borosilicate), and SRM-739 (silica) are positive and range in value from 2 × 10−6/K to 9.8 × 10−6/K. The differences in the d n /d T of these glasses arise from differences in the coefficient of thermal expansion and the temperature coefficient of the electronic polarizability.  相似文献   

9.
10.
The topology of crack tips in soda–lime–silicate glass was investigated using atomic force microscopy (AFM). Studies were conducted on cracks that were first propagated in water and then subjected to stress intensity factors either at or below the crack growth threshold. Exposure to loads at the crack growth threshold resulted in long delays to restart crack growth after increasing the stress intensity factor to higher values. After breaking the fracture specimen in two, the "upper" and "lower" fracture surfaces were mapped and compared using AFM. Fracture surfaces matched to an accuracy of better than 0.5 nm normal to the fracture plane and 5 nm within the fracture plane. Displacements between the upper and lower fracture surfaces that developed after a critical holding time were independent of distance from the crack tip, and increased with holding time. Despite the surface displacement, crack tips appeared to be sharp. Results are discussed in terms of a hydronium ion–alkali ion exchange along the crack surfaces and corrosion of the glass surface near the crack tip by hydroxyl ions.  相似文献   

11.
The effect of a glass enamel coating on the strength and fatigue behavior of float glass was investigated. Commercially available enamel that was comprised of Cu2Cr2O4 pigment particles in a bismuth-zinc borosilicate glass matrix was applied to a soda–lime–silica float glass via screen printing, followed by fusion at elevated temperature. Strengths of the enameled specimens were evaluated in biaxial flexure using a ring-on-ring (ROR) test geometry, and the data were analyzed using a conventional two-parameter Weibull distribution. Enameling was found to significantly degrade the strength of the float glass. There was no statistical difference in the characteristic strengths of samples enameled on the air side (66 MPa) compared with samples enameled on the tin side (61 MPa) of the float glass. Fractographic analysis revealed that the failures in the enameled float glass samples initiated at pores and pigment aggregates in the enamel, whereas failures in float glass samples initiated solely from surface flaws. Dynamic fatigue tests were performed on enameled float glass and indented float glass samples to determine the effect of the enamel on the stress corrosion behavior of the enameled components. There was no statistically significant difference between the stress corrosion exponents for the float glass and enameled float glass specimens.  相似文献   

12.
The glass-formation region of the soda–yttria–silica system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cm3, a refractive index of 1.50 to 1.60, Vickers hardness values of 3.7 to 5.8 GPa, softening temperature between 500° and 780°C, and a coefficient of thermal expansion of 7 × 10-6/oC to 19 × 10-6/o C. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to investigate the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.  相似文献   

13.
The absorption coefficient values of several silicate glasses in the IR radiation range were determined. Four methods were employed in this study: (1) direct transmission by CO2 laser, (2) direct transmission through ultrathin sections using an IR spectrometer, (3) glass particle dispersions in KBr pressed pellets, and (4) IR reflection spectral analysis. Wide variations in values were observed for some of these techniques. The reasons for the variations were explored, and evidence is presented to support the conclusion that the reflection measurements and the low-power transmission technique yield accurate values. The pellet technique was found to possess too many experimental variables which could not be controlled and gave erroneous data. The damage produced by direct transmission of high-power radiation was severe and introduced effects which gave spurious results.  相似文献   

14.
Secondary ion mass spectrometry investigations were performed on leached K2 O–CaO–SiO2 glass with a chemical composition similar to that of medieval stained glass. The results reveal that the type and concentration of the acid used definitely influence the kinetics of the leaching process. In addition to hydrogen, an enrichment of Cl and S was observed in the leached layers of glass treated with HCl and H2 SO4, respectively.  相似文献   

15.
The atomic force microscope (AFM) was used to explore the nature of features formed on the surfaces of cracks in soda–lime–silicate glass that were held at stress intensity factors below the crack growth threshold. All studies were conducted in water. Cracks were first propagated at a stress intensity factor above the crack growth threshold and then arrested for 16 h at a stress intensity factor below the threshold. The stress intensity factor was then raised to reinitiate crack growth. The cycle was repeated multiple times, varying the hold stress intensity factor, the hold time, and the propagation stress intensity factor. Examination of the fracture surface by optical microscopy showed surface features that marked the points of crack arrest during the hold time. These features were identical to those reported earlier by Michalske in a similar study of crack arrest. A study with the AFM showed these features to be a consequence of a bifurcation of the crack surface. During the hold period, waviness developed along the crack front so that parts of the front propagated out of the original fracture plane, while other parts propagated into the plane. Crack growth changed from the original flat plane to a bifurcated surface with directions of as much as 3° to 5° to the original plane. This modification of crack growth behavior cannot be explained by a variation in the far-field stresses applied to the crack. Nor can the crack growth features be explained by chemical fluctuations within the glass. We speculate that changes in crack growth direction are a consequence of an enhancement in the corrosion rate on the flank of the crack at stresses below the apparent crack growth threshold in a manner described recently by Chuang and Fuller.  相似文献   

16.
The leaching behavior of Na from soda–lime–silicate glass was investigated by preparing glass powders with average particle diameters of 53 and 19 μm, and leaching in HNO3 at 90°−140°C. A new theoretical equation for Na leaching from a spherical particle is proposed based on the assumption that a rate-determining process is the three-dimensional self-diffusion of Na in glass. The diffusion constant ( D ) of Na in glass was obtained by fitting the experimental data to a theoretical equation. The values of D and activation energy obtained are comparable to those obtained in other studies on larger particles.  相似文献   

17.
The coupled effects of particle size and 1 wt% NaCl additions on the sequence of melting reactions in a multicomponent system (sand–soda ash–calcite–dolomite–feldspar) were studied using data from DTA, DTGA, and XRD interactively. Glass batches varied in average particle size from 250 μm to finer than 45 μm. Milestone events in the fusion process of the coarse particle base glass were elucidated. The termination temperature of the last significant reaction associated with CO2 release was 35°C lower in the fine particle size batch than with the coarsest batch. Liquid-phase formation at ∼523°C in the batch with 1 wt% NaCl occurred to an increasingly sizable extent with decreasing particle size. This contrasts with a similar effect at ∼630°C for a comparable batch without NaCl via eutectic melting between soda ash and dolomite. Sodium chloride additions significantly enhanced dissolution of CaO relic.  相似文献   

18.
Sodium-calcium-lead silicate glass compositions were prepared over a wide compositional range by conventional glass-melting methods. The acid chemical stability of the glass structure was studied by corroding samples of glass in 4% acetic acid solution at 22°C for periods up to 24 h. Lead corrosion stability was evaluated by measuring lead concentrations in the corrosion solution. At short times, parabolic time dependence was observed and the parabolic time coefficients were regressed against composition, yielding a simple additive relationship. A similar model was fitted to 24-h release data, which showed compositional effects similar to the 2-h data. Of the oxides studied, sodium was the most detrimental to durability, and the coefficients of the oxides decreased in the series: Na2O, PbO, CaO, SiO2. The effects of the oxides could be partially explained by the number of nonbridging oxygens expected in the glass structure, and the residual effect was attributed to cation characteristics. Small phosphate additions to the glass greatly increased the lead-ion stability under nearly all experimental conditions examined.  相似文献   

19.
A mechanism is proposed for the radiolysis which occurs in soda-silicate glasses when they are irradiated. The mechanism is consistent with the observations of the reaction products which are produced and the rates at which the decomposition proceeds.  相似文献   

20.
Indentation fracture with a cube-corner diamond pyramid on soda–lime silicate glass and fused silica is investigated during the entire indentation cycle in both silicone oil and ambient-air environments. Radial cracks form immediately on loading in all cases. The two-component, elastic-contact + elastic-plastic mismatch (residual) stress field model that has been used successfully to describe radial crack evolution at Vickers indentations fails to describe the fracture response with the cube-corner. The amplitudes of both elastic-contact and residual stress-intensity factors as deduced from these cube-corner experiments are up to a factor of 10 greater than have been previously observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号