首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
计算机技术的进步推动了网络技术发展,传统的计算机局域网故障检测技术过于依赖人力,检测耗时长,检测效果差,无法满足目前局域网故障检测需求,因此基于支持向量机设计了新的计算机局域网故障检测技术。首先选取了计算机局域网故障检测模型,其次基于支持向量机设计了计算机局域网故障检测算法,最后优化了径向基检测神经网络,从而实现了计算机局域网故障检测,进行实验,结果表明,设计的计算机局域网故障检测技术的检测耗时较短,具有省时性,有一定的应用价值。  相似文献   

2.
李永阳 《塑料制造》2009,(12):85-90
随着三维CAD技术应用的不断深入,表明了在参数化CAD技术基础上对三维CAD技术的新需求,以适应企业产品创新设计的新需要.结合ThinkDesign软件技术应用实例,阐明CAD技术对企业开展创新设计的帮助,得出了参数化CAD技术将向创新协同CAD技术的方向延伸。  相似文献   

3.
综述了塑料包装的最常见的包装形式以及计算机辅助设计(CAD)在塑料包装设计中的应用。在设计的同时,使用计算机辅助工程(CAE)进行模拟和优化。采用CAD与CAE模拟仿真交替进行,不断重复,直至确定最佳的塑料包装设计方案。根据绘图环境的不同分为二维CAD和三维CAD。其中,二维CAD主要进行二维图形的设计,三维CAD主要进行三维实体造型设计。通常先利用三维CAD软件进行三维造型设计,再运用其工程制图模块导出二维工程图。然后,运用CAE进行静应力、密封试验等分析,进而优化包装容器的设计。采用CAD和CAE对塑料包装材料和系统进行设计和仿真模拟,不仅可以使设计更加合理,而且可以有效降低开发成本和开发周期,提高生产效率。  相似文献   

4.
本文首先对CAD技术的应用情况和在化工设各设计中应用CAD技术的优势进行了简要分析,并进一步说明了在化工设备设计中应用CAD技术的方法。文章重点对开发化工设备CAD软件应注意的几个方面做了较详细的论述。最后对如何提高CAD技术在化工设备设计中的应用水平提了一些个人看法。  相似文献   

5.
CAD技术在化工机械设计中的应用已经成为普遍现象,只有一少部分还在使用传统的绘图方式,这也证明了CAD技术在化工机械设计中的优势,本文就CAD技术在化工机械设计中的作用及原理进行分析;对CAD系统的创建进行分析,并且对其在化工机械设计中的应用效果和传统绘图模式在化工机械设计中的应用效果做出比较。  相似文献   

6.
针对CAD技术在化工机械设计中的应用进行分析,目的在于优化CAD技术在化工机械设计中的应用策略,为我国化工机械设计的发展建言献策。  相似文献   

7.
从CAD/CAM出发,结合国内耐火制品模具设计的要求,重点研究了用参数法模具CAD系统解决耐火制品模具的设计问题。系统运用CAD系统设计的基本原理,采用学数化特征造型的方法,集成化的设计环境,实现了耐火制品模具的自动设计及其工程图纸的输出。  相似文献   

8.
汪信 《四川水泥》2022,(5):64-65+71
BIM与CAD都是建筑行业常用的技术设计工具,但BIM作为一种新兴的设计技术,解决了传统CAD绘图技术的缺陷和不足。对BIM和CAD的内容和特性进行比较分析得知,BIM作为CAD技术的迭代,在方案设计、数据处理、施工管理阶段都有着更为明显的优势,能够在保障设计质量的基础上缩短设计时间,在当前的建筑设计中发挥着重要作用。  相似文献   

9.
CAD是指计算机辅助设计.自二十世纪九十年代初起,我国倡导"甩掉图板,大力推动CAD技术应用"、"大力发展应用信息技术,实现设计生产智能自动化"、"推广计算机辅助设计技术,提高机电产品设计水平",整个CAD技术应用进行大面积普及和推广,全国CAD应用推广逐步呈现燎原之势.  相似文献   

10.
注射模具CAD制图标准体系   总被引:2,自引:2,他引:0  
以Visual Basic6.0为工具建立的注射模具CAD制图标准查询系统,可用于CAD设计注射模具所需的CAD制图标准、机械制图标准、设计标准等各种标准的查询。该系统界面友好、操作简便,是用CAD设计注射模具的良好助手,使用者还可以对其加以扩充和更新。  相似文献   

11.
王彦  左宁  姜媛媛  陈芳媛 《化工进展》2020,39(4):1539-1549
污泥生物炭中氮硫元素含量高,其氮硫行为和环境效应对全球气候变化的影响不容忽视。以往的研究中,研究者往往以富碳生物炭作为主要研究对象,关注碳对全球气候变化的行为和功效,而对氮硫元素的作用关注不够。本文从原始污泥基本性质到其热解过程,再到生物炭的老化,逐步对污泥生物炭整个生命周期内氮硫的行为及其环境效应研究进行综述,并对未来应注重开展的研究方向进行展望,为生物炭中氮硫元素固定、释放及与之关联的环境效应和温室气体排放控制研究提供理论基础。分析表明,污泥中氮元素含量普遍高于硫元素,且热解过程中氮比硫更容易转移至气相产物。氮硫元素随热解温度的增加,在三相产物中的分配都是炭中持续减少,油中先增后减,气中一直增加。高温(>800℃)条件下,气相中的氮含量高于固相,而硫元素则仍然主要存在于固相中。污泥生物炭老化及其环境效应研究表明,污泥生物炭氮硫元素与土壤的相互作用及其温室效应问题在今后的研究中应引起重视。  相似文献   

12.
The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.  相似文献   

13.
Crystal-bearing cells or idioblasts, which deposit calcium oxalate, are located in various tissues and organs of many plant species. The functional significance of their formation is currently unclear. Idioblasts in the leaf parenchyma and the development of crystal-bearing cells in the anther tissues of transgenic tomato plants (Solanum lycopersicon L.), expressing the heterologous FeSOD gene and which showed a decrease in fertility, were studied by transmission and scanning electron microscopy. The amount of calcium oxalate crystals was found to increase significantly in the transgenic plants compared to the wild type (WT) ones in idioblasts and crystal-bearing cells of the upper part of the anther. At the same time, changes in the size and shape of the crystals and their location in anther organs were noted. It seems that the interruption in the break of the anther stomium in transgenic plants was associated with the formation and cell death regulation of a specialized group of crystal-bearing cells. This disturbance caused an increase in the pool of these cells and their localization in the upper part of the anther, where rupture is initiated. Perturbations were also noted in the lower part of the anther in transgenic plants, where the amount of calcium oxalate crystals in crystal-bearing cells was reduced that was accompanied by disturbances in the morphology of pollen grains. Thus, the induction of the formation of crystal-bearing cells and calcium oxalate crystals can have multidirectional effects, contributing to the regulation of oxalate metabolism in the generative and vegetative organs and preventing fertility when the ROS balance changes, in particular, during oxidative stresses accompanying most abiotic and biotic environmental factors.  相似文献   

14.
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.  相似文献   

15.
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.  相似文献   

16.
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC–MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC–MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.  相似文献   

17.
Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter of the central and peripheral nervous systems, predominantly secreted in the gastrointestinal tract, especially in the gut. 5-HT is a crucial enteric signaling molecule and is well known for playing a key role in sensory-motor and secretory functions in the gut. Gastroenteropathy is one of the most clinical problems in diabetic patients with frequent episodes of hyperglycemia. Changes in 5-HT expression may mediate gastrointestinal tract disturbances seen in diabetes, such as nausea and diarrhea. Based on the double immunohistochemical staining, this study determined the variability in the population of 5-HT-positive neurons in the porcine small intestinal enteric neurons in the course of streptozotocin-induced diabetes. The results show changes in the number of 5-HT-positive neurons in the examined intestinal sections. The greatest changes were observed in the jejunum, particularly within the myenteric plexus. In the ileum, both de novo 5-HT synthesis in the inner submucosal plexus neurons and an increase in the number of neurons in the outer submucosal plexus were noted. The changes observed in the duodenum were also increasing in nature. The results of the current study confirm the previous observations concerning the involvement of 5-HT in inflammatory processes, and an increase in the number of 5-HT -positive neurons may also be a result of increased concentration of the 5-HT in the gastrointestinal tract wall and affects the motor and secretory processes, which are particularly intense in the small intestines.  相似文献   

18.
Stress and strain state of concrete during freezing and thawing cycles   总被引:3,自引:0,他引:3  
The objective of this work is to calculate the pressures, stresses, and strains induced into moist concrete during freezing and thawing. The applied theory is based on thermodynamics and the linear theory of elasticity. If no additional salts are dissolved in the pore water the inputs needed in the theory are relative humidity and temperature measured in the sample chamber and inside concrete and evaporable water amount in the pore structure. Theoretical results were compared with the test results made with two concretes cured under water or at 96% relative humidity. One of the concretes was air entrained and in the comparison concrete no air-entraining agents were used. In the test cylinders cured under water the largest tensional stresses in freezing occurred on the surface of the test cylinders both in the axial and tangential direction. The largest tensional stress was 2.2 MPa, both in air-entrained and in non air-entrained concretes. The largest tensional stresses in the warming phase took place at the end of the thawing period when the chamber temperature was around +5 °C. Then the maximum tension occurred in the middle of the concrete cylinder in the axial direction of the cylinder. This maximum tensional stress was over 2.5 MPa in the air-entrained concrete cured in the relative humidity of 96%. The thermodynamic pumping effect at the end of the thawing phase in every cycle can increase the pore water amount remarkably if free water or moisture is available on the surface of the structure or in the environment vapor. The thermodynamic pumping effect seems to be remarkably greater and more dangerous in air-entrained concretes.  相似文献   

19.
For the clinical application of biodegradable hemostatic surgical clips in laparoscopic surgery, it is necessary to determine their degradability and biocompatibility. Herein, in vitro and in vivo studies were undertaken to evaluate the degradability and biocompatibility of bioabsorbable clips made of poly(p-dioxanone). Changes in weight loss, pull-off force, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) of the poly(p-dioxanone) clips were determined after they were degraded in deionized water and phosphate buffer saline for the in vitro experiment and in laparoscopic models of bile duct ligation(BDL) and right gastroepiploic artery ligation(GEAL) using New Zealand white rabbits for the in vivo experiment. Changes in weight loss and pull-off force were greater in the in vivo experiment than the in vitro experiment. DSC showed the greatest variation in the degree of crystallinity of the clips degraded in deionized water. Stark differences in SEM were observed after 4 weeks of degradation both in vitro and in vivo. Furthermore, the cytocompatibility of the clips was considered satisfactory because the L929 cells could adhere to the clips and proliferate adequately in the presence of the clip extract. Biocompatibility was inferred based on the histological analysis of BDL and GEAL, no significant inflammatory responses were observed after 4 weeks of ligation.  相似文献   

20.
廖玮婷  解新安  李璐  李雁  樊荻  孙娇  王鑫 《化工进展》2019,38(5):2205-2211
通过研究木质素分别在超临界甲醇和乙醇溶剂中的液化过程,分析反应温度(260~340℃)及反应时间(0~120min)对木质素在两种溶剂中的转化率、生物油收率及其组分差异的影响。实验表明,木质素在超临界乙醇中的转化率及产物收率均高于甲醇。当反应温度340℃,反应时间60min,木质素在超临界乙醇中的转化率和生物油收率比在甲醇中分别提高了16.23%和11.54%,残渣收率降低了16.23%。通过GC-MS和FTIR对生物油和残渣分析,发现生物油组分中芳香族化合物相对含量较高,在甲醇和乙醇溶剂中分别达到66.13%和58.84%;随着反应时间的延长,甲醇溶剂中残渣的醚键官能团逐渐增强,而在乙醇溶剂中则先增强后减弱。分析认为在木质素降解过程中,超临界乙醇和甲醇均可产生氢自由基作为供氢体,攻击木质素及其大分子片段中的官能团,同时使液化产物中的活性片段减活,减弱重聚合反应,从而更利于芳烃产物的生成。而甲醇在液化过程中容易与木质素断键产生的苯酚中间体发生脱氢缩合反应,通过醚键聚合产生长链芳香族化合物,形成残渣,降低生物油收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号