首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种超高效电火花电孤复合铣削镍基高温合金Ineonel718的加工方法.构建了一种新型大功率电源,主要由高压脉冲电源和低压大功率直流电源组成。在冲液和电极旋转的作用下得到了非连续电弧,材料去除率可达13421mm3/min,相对电极损耗率可达1.71%。进行了复合加工和电火花加工的对比实验研究,分析了电极转速对材料去除率和相对电极损耗率的影响,并对加工表面特性进行了研究。  相似文献   

2.
The present work investigates the machining characteristics of EN-8 steel with copper as a tool electrode during rotary electrical discharge machining process. The empirical models for prediction of output parameters have been developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Three independent input parameters of the model viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Analysis of the results, by using Taguchi's recommended signal–noise ratio formulae and ANOVA, has been conducted to identify the significant parameters and their degree of contribution in the process output. Analyzed results shows that peak current and pulse on time are the most significant and significant parameters for MRR and EWR, respectively. But peak current and electrode rotation become the most significant and significant parameters for SR, respectively. Experimental results further revealed that maximizing the MRR while minimizing EWR and improving the surface roughness, cannot be achieved simultaneously at a particular combination of control parameters setting. In addition, the predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results.  相似文献   

3.
Dry electrical discharge machining (EDM) is an environmentally-friendly alternative of die-sinking EDM process, which it uses gaseous medium instead of liquid as a dielectric. Due to contribution of too many parameters in this process, selection of optimal parameters to increase the process performances is a really crucial concern. In this work, a predictive model based on back-propagation neural network has been applied to correlate the inputs and outputs of dry EDM process. Herein, the inputs were gap voltage, pulse current, pulse on time, duty factor, air intake pressure and rotational speed of tool, and also the main outputs were material removal rate (MRR) and surface roughness (SR). Firstly a back-propagation (BP) and radial basis function neural network have been developed based on data generated from literature [Saha and Choudhary Int J Mach Tools Manuf 49:297?C308 (2009)]. Then, the accuracy of proposed models has been checked by their values of error percent via testing data. Hereafter, the most accurate model was served as an objective function to optimize the process using artificial bee colony (ABC) algorithm. In optimization stage, firstly a single objective optimization was fulfilled to determine the optimal factors related to each output separately. Then a multi-objective optimization was implemented to calculate the best solutions in the case of higher MRR and lower SR simultaneously. Results indicated that the predictive model can estimate the dry EDM process precisely, and also the ABC algorithm could find the optimal solution sets logically.  相似文献   

4.
The aim of the present research work has been to gain a broader understanding of how or why laser assisted machining (LAM) improves machinability of Inconel 718, a hard-to-machine material of interest in the aeronautic industry. This has been accomplished by, first, running short run tests to determine the laser parameters and configuration for which highest force reductions are obtained and also to determine the effect of cutting parameters (feed, cutting speed and depth of cut) on force reduction. Secondly, long run tests have been performed in order to analyze process variables such as cutting forces, tool wear and surface roughness. Temperatures and hardness have been also measured in order to gain a broader perspective of the process.Experimental results have demonstrated that LAM improves machinability of Inconel 718 since machining forces and final surface roughness are reduced. The novelty reached with the present research work is the identification of three mechanisms associated to the laser heating as the responsible of this machinability improvement: material yield strength reduction, material base hardness reduction (only in precipitation hardened Inconel 718) and elimination of the work hardening generated in previous machining passes. The reduction of the work hardening leads also to a lower notch wear that limits the risk of sudden failure of the cutting tool and thus the wear mode is changed to flank wear, which leads to a controllable tool life and better surface roughness.  相似文献   

5.
应用田口-灰关联法对Inconel 718微放电铣削多重质量特性如电极消耗率、材料去除率和扩口量进行最佳化,分析放电电流、脉冲时间、休止时间和极间间隙对加工Inconel 718之电极消耗率、材料去除率和扩口量的影响。实验结果表明,以最佳微放电铣削参数进行加工,其电极消耗率由5.6×10-9mm3/min降低到5.2×10-9mm3/min,材料去除率由0.47×10-8mm3/min增加到1.68×10-8mm3/min,扩口量由1.27μm降低到1.19μm。研究结果显示,应用田口-灰关联法,可以改善微放电铣削多重质量特性。  相似文献   

6.
Refrigerated cooling air cutting of difficult-to-cut materials   总被引:1,自引:1,他引:1  
One approach to enhance machining performance is to apply cutting fluids during cutting process. However, the use of cutting fluids in machining process has caused some problems such as high cost, pollution, and hazards to operator's health. All the problems related to the use of cutting fluids have urged researchers to search for some alternatives to minimize or even avoid the use of cutting fluids in machining operations. Cooling gas cutting is one of these alternatives. This paper investigates the effect of cooling air cutting on tool wear, surface finish and chip shape in finish turning of Inconel 718 nickel-base super alloy and high-speed milling of AISI D2 cold work tool steel. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry cutting, minimal quantity lubrication (MQL), cooling air, and cooling air and minimal quantity lubrication (CAMQL). For this research, composite refrigeration method was adopted to develop a new cooling gas equipment which was used to lower the temperature of compressed gas. The significant experimental results were: (i) application of cooing air and CAMQL resulted in drastic reduction in tool wear and surface roughness, and significant improvement in chip shape in finish turning of Inconel 718, (ii) in the high-speed milling of AISI D2, cooling air cutting presented longer tool life and slightly higher surface roughness than dry cutting and MQL. Therefore, it appears that cooling air cutting can provide not only environment friendliness but also great improvement in machinability of difficult-to-cut materials.  相似文献   

7.
电火花电弧复合加工解决了电火花加工效率低的问题,与电火花加工相比,其加工效率提高了数倍,针对某些材料,其加工效率甚至超过了传统机械加工,但也存在自动化程度低、电极损耗严重等缺陷。利用电火花电弧复合加工技术进行了大量实验,并以此为基础,分析了不同加工参数下的工件性能,得到在不同峰值电流、脉宽、电极主轴转速等参数下的工件加工效率、表面粗糙度及相对电极损耗率的变化规律,以期得出针对不同加工目的的最优工作参数。  相似文献   

8.
Dry electric discharge machining (EDM) is an environment-friendly modification of the oil EDM process in which liquid dielectric is replaced by a gaseous medium. In the current work, parametric analysis of the process has been performed with tubular copper tool electrode and mild steel workpiece. Experiments have been conducted using air as the dielectric medium to study the effect of gap voltage, discharge current, pulse-on time, duty factor, air pressure and spindle speed on material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). First, a set of exploratory experiments has been performed to identify the optimum tool design and to select input parameters and their levels for later stage experiments. Empirical models for MRR, Ra and TWR have then been developed by performing a designed experiment based on the central composite design of experiments. Response surface analysis has been done using the developed models. Analysis of variance (ANOVA) tests were performed to identify the significant parameters. Current, duty factor, air pressure and spindle speed were found to have significant effects on MRR and Ra. However, TWR was found to be very small and independent of the input parameters.  相似文献   

9.
Laser-assisted machining of Inconel 718 with an economic analysis   总被引:2,自引:0,他引:2  
Superalloys have high strengths at elevated temperatures, which make them attractive toward various applications and also make these materials difficult to machine at room temperature due to excessive tool wear and poor surface finish. Laser-assisted machining (LAM) offers the ability to machine superalloys more efficiently and economically by providing the local heating of the workpiece prior to material removal by a single point cutting tool.An existing transient, three-dimensional heat transfer model is modified for modeling LAM of Inconel 718. Suitable coating conditions are determined for increasing the laser absorptivity in metals and an approximate absorptivity value is determined. The thermal model is validated in axial and circumferential directions by temperature measurement using an infrared camera.The machinability of Inconel 718 under varying conditions is evaluated by examining tool wear, forces, surface roughness, and specific cutting energy. With increasing material removal temperature from room temperature to 620 °C, the benefit of LAM is demonstrated by a 25% decrease in specific cutting energy, a 2–3-fold improvement in surface roughness and a 200–300% increase in ceramic tool life over conventional machining. Moreover, an economic analysis shows significant benefits of LAM of Inconel 718 over conventional machining with carbide and ceramic inserts.  相似文献   

10.
A versatile process of electrical discharge machining (EDM) using magnetic force assisted standard EDM machine has been developed. The effects of magnetic force on EDM machining characteristics were explored. Moreover, this work adopted an L18 orthogonal array based on Taguchi method to conduct a series of experiments, and statistically evaluated the experimental data by analysis of variance (ANOVA). The main machining parameters such as machining polarity (P), peak current (Ip), pulse duration (τp), high-voltage auxiliary current (IH), no-load voltage (V) and servo reference voltage (Sv) were chosen to determine the EDM machining characteristics such as material removal rate (MRR) and surface roughness (SR). The benefits of magnetic force assisted EDM were confirmed from the analysis of discharge waveforms and from the micrograph observation of surface integrity. The experimental results show that the magnetic force assisted EDM has a higher MRR, a lower relative electrode wear ratio (REWR), and a smaller SR as compared with standard EDM. In addition, the significant machining parameters, and the optimal combination levels of machining parameters associated with MRR as well as SR were also drawn. Moreover, the contribution for expelling machining debris using the magnetic force assisted EDM would be proven to attain a high efficiency and high quality of surface integrity to meet the demand of modern industrial applications.  相似文献   

11.
Inconel alloys including IN 718 alloy are widely used in turbomachinery industry due to their superior mechanical properties. Inconel alloys are very difficult to machine using cutting and grinding. Wire electrical discharge machining (W-EDM) is an alternative process to manufacture complex Inconel parts. However, little research has been done on surface integrity by W-EDMed IN 718. This study focuses on surface integrity of IN 718 by W-EDM at different modes of discharge energy. The results show that the EDMed surface topography shows dominant coral reef microstructures at high energy mode, while random microvoids are dominant at low energy modes. The average roughness can be significantly reduced at low energy mode. A thick white layer is predominantly discontinuous and non-uniform at relative high energy modes. Microvoids are confined within the thick white layers and no microcracks were found in the subsurface. A thin white layer by trim cut at low energy mode becomes continuous, uniform, and is free of voids. Compared to the bulk, white layers have dramatic reduction in microhardness. In addition, surface alloying from wire electrode and water dielectric is obvious in main cut, but it can be minimized in trim cuts.  相似文献   

12.
文章探索后混合磨料水喷丸(Abrasive Waterjet Peening,AWP)工艺参数对Inconel718合金形变层特征的影响规律。采用不同靶距及喷嘴移动速度对Inconel718合金进行AWP处理,对表面形貌、粗糙度、显微组织、显微硬度梯度及残余应力场分布等开展对比实验。结果表明:随着靶距及喷嘴移动速度的增大,表面粗糙度、表面硬化程度、表面残余压应力及最大残余压应力值都呈减小的变化趋势,而最大残余压应力位置和残余压应力层深基本不受其影响。  相似文献   

13.
A new approach for machining of Inconel 718 is presented in this paper. It combines traditional turning with cryogenically enhanced machining and plasma enhanced machining. Cryogenically enhanced machining is used to reduce the temperatures in the cutting tool, and thus reduces temperature-dependent tool wear to prolong tool life, whereas plasma enhanced machining is used to increase the temperatures in the workpiece to soften it. By joining these two non-traditional techniques with opposite effects on the cutting tool and the workpiece, it has been found that the surface roughness was reduced by 250%; the cutting forces was decreased by approximately 30–50%; and the tool life was extended up to 170% over conventional machining.  相似文献   

14.
This study focuses on using ultrasonic to improve the efficiency in electrical discharge machining (EDM) in gas medium. The new method is referred to as ultrasonic-assisted electrical discharge machining (UEDM). In the process of UEDM in gas, the tool electrode is a thin-walled pipe, the high-pressure gas medium is applied from inside, and the ultrasonic actuation is applied onto the workpiece. In our experiment, the workpiece material is AISI 1045 steel and the electrode material is copper. The experiment results indicate that (a) the Material Removal Rate (MRR) is increased with respect to the increase of the open voltage, the pulse duration, the amplitude of ultrasonic actuation, the discharge current, and the decrease of the wall thickness of electrode pipe; and (b) the surface roughness is increased with respect to the increase of the open voltage, the pulse duration, and the discharge current. Based on experimental results, a theoretical model to estimate the MRR and the surface roughness is developed.  相似文献   

15.
A novel compound machining of titanium alloy (Ti6Al4V) by super high speed electrical discharge machining (EDM) milling and arc machining was proposed in this paper. The power supply consisted of a pulse generator and a DC power source which were isolated from each other. A rotating pipe graphite electrode was connected to the negative pole of the power supply. The plasma channel was able to deionize, and maximum material removal rate (MRR) reached 21,494 mm3/min with a relative electrode wear ratio (REWR) of 1.7% because of high current and efficient flushing. Compared with traditional EDM, the compound machining achieved a significantly higher MRR but a similar REWR. To investigate the characteristics of the compound machining, the effects of electrode polarity, peak voltage, peak current, and flushing pressure on the performance of the process, including its MRR, REWR, and radius of overcut (ROC), were determined. In addition, scanning electron microscopy, X-ray diffraction, and microhardness analysis were conducted. Result shows that the proposed method can machine difficult-to-machine materials efficiently.  相似文献   

16.
New observations on tool wear mechanism in dry machining Inconel718   总被引:2,自引:0,他引:2  
Tool wear is a problem in machining nickel-based alloy Inconel718, and it is thus of great importance to understand tool wear. Tool wear mechanism in dry machining Inconel718 with coated cemented carbide tools was analyzed in this paper. CCD and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS) were used to study tool wear mechanism. The results show that the main reason which causes cutting tool wear was that the tool materials fall off from the tool substrate in the form of wear debris. In addition,, element diffusion between tool and workpiece and oxidation reaction all accelerate the formation and the peeling of the wear debris. According to analysis of tool wear mechanism, tool flank wear model was established. The optimal temperature in machining Inconel718 with PVD-coated (TiAlN) tool was obtained through the established model. Excellent experimental agreement was achieved in optimal temperature calculated by the established model.  相似文献   

17.
TiNi形状记忆合金的电火花加工性能   总被引:1,自引:0,他引:1  
TiNi形状记忆合金由于具有优异的超弹性和形状记忆效应等性能而被大量地应用于工业生产中。然而,形状记忆合金的传统加工相当复杂。因此,研究TiNi形状记忆合金的电火花线切割加工(WEDM)性能。采用L27正交阵列以尽量减少实验。在不同的脉冲持续时间、脉冲关断时间、伺服电压、冲洗压力和线速度条件下进行实验。为同步优化提出一种利用Taguchi设计与实用理念的多响应优化方法。通过对信噪比(S/N)的均值分析和方差分析,确定最佳参数水平。Taguchi分析表明:1μs脉冲持续时间、3.8μs脉冲关断时间、40 V伺服电压、1.8×105Pa冲洗压强和8 m/min线速度,有利于同时使材料去除率最大化和表面粗糙度最小化。TiNi形状记忆合金电火花线切割加工的优化结果表明:脉冲持续时间显著影响材料去除率和表面粗糙度。在较长的脉冲持续时间时,在加工表面可观察到放电坑、微裂纹和重铸层。  相似文献   

18.
An attempt was made to model input-output relationships of an electrical discharge machining process based on the experimental data (collected according to a central composite design) using multiple regression analysis. Three input parameters, such as peak current, pulse-on-time and pulse-duty-factor, and two outputs, namely, material removal rate (MRR) and surface roughness (SR) had been considered for the said modeling. The value of regression coefficient was determined for each model. The performances of the developed models were tested with the help of some test cases collected through the real experiments and were found to be satisfactory. It had been posed as an optimization problem and solved using a genetic algorithm to determine the set(s) of optimal parameters for ensuring the maximum MRR and minimum SR. It was also formulated as a multi-objective optimization problem and a Pareto-optimal front of solutions had been obtained.  相似文献   

19.
This paper describes preliminary results of replacing water-based (aqueous) flood coolant with supercritical CO2-based minimum quantity lubrication (scCO2 MQL) in an external turning operation on an Inconel 750 combustor housing. Two series of tests were performed: the first series to compare tool wear performance observed with aqueous flood coolant and scCO2 MQL under identical machining conditions, and the second series to investigate tool wear performance with scCO2 MQL at higher metal removal rates (MRR) than the MRR used in production practice with aqueous flood coolant. All tests were performed using roughing cuts on unaged Inconel with coated carbide tooling, and vegetable oil lubricant. As a key enabler, special flank jet tool holders were used to eliminate chip blockage of the lubricant stream.In the first series of tests, tool wear was observed to be consistently lower with scCO2 MQL than with the aqueous flood coolant. In the second series of tests, two process conditions were demonstrated for which MRR increased by 25% and 40%, respectively, with scCO2 MQL compared to aqueous flood coolant at equivalent tool life. Notch wear, the limiting factor for tool life under baseline conditions, was reduced for scCO2 MQL, but crater wear and chip hammering were more pronounced. Overall the results indicate that scCO2 MQL can provide increased tool life or material removal rate compared to aqueous flood coolants when machining Inconel 750 and similar nickel alloys by improving lubricity and changing the dominant wear mechanism from rapid notch wear to gradual crater wear and chip hammering. These tests, which involved extended cuts of over 10 min under production conditions, represent an important extension of MQL machining to a hard metal alloy that cannot be machined by conventional MQL methods.  相似文献   

20.
Electrical discharge machining of Ti6Al4V with a bundled electrode   总被引:1,自引:0,他引:1  
The aim of this study is to investigate an efficient Ti6Al4V electrical discharge machining (EDM) process with a bundled die-sinking electrode. The feasibility of machining Ti6Al4V with a bundled electrode was studied and its effect on EDM performance was compared experimentally using a solid die-sinking electrode. The simulation results explain the high performance of the EDM process with a bundled electrode by through the use of multi-hole inner flushing to efficiently remove molten material from the inter-electrode gap and through the improved ability to apply a higher peak current. A 3-factor, 3-level experimental design was used to study the relationships between 2 machining performance parameters (material removal rate: MRR, tool wear ratio: TWR) and 3 machining parameters (fluid flow rate, peak current and pulse duration). The main effects and influences of the 2-factor interactions of these parameters on the performances of the EDM process with the bundled electrode are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号