首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《能源学会志》2020,93(5):1960-1969
Presently, sugarcane bagasse (SB) and oat hulls (OH) have a distinctive potential as a renewable source of biomass, due to its global availability, which is advantageous for producing liquid and gaseous fuels by thermochemical processes. Thermo-Catalytic Reforming (TCR) is a pyrolysis based technology for generating energy vectors (char, bio-oil and syngas) from biomass wastes. This work aims to study the conversion of SB and OH into fuels, using TCR in a 2 kg/h continuous pilot-scale reactor at different pyrolysis temperatures. The pyrolysis temperatures were studied at 400, 450 and 500 °C, while the subsequent reforming temperature remained constant at 500 °C. The bio-oil contained the highest calorific value of 33.4 and 33.5 MJ/kg for SB and OH, respectively at 500 °C pyrolysis temperature, which represented a notable increase compared to the raw material calorific value of SB and OH (16.4 and 16.0 MJ/kg, respectively), this was the result of deoxygenation reactions occurring. Furthermore, the increment of the pyrolysis temperature improved the water content, total acid number (TAN), viscosity and density of the bio-oil. The syngas and the biochar properties did not change significantly with the increase of the pyrolysis temperature. In order to use TCR bio-oil as an engine fuel, it is necessary to carry out some upgrading treatments; or blend it with fossil fuels if it is to be used as a transportation fuel. Overall, TCR is a promising future route for the valorisation of lignocellulosic residues to produce energy vectors.  相似文献   

2.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

3.
The increasingly severe environmental pollution and energy shortage issues have demanded the production of renewable and sustainable biofuels to replace conventional fossil fuels. Lignocellulosic (LC) biomass as an abundant feedstock for second-generation biofuel production can help overcome the shortcomings of first-generation biofuels related to the “food versus fuel” debate and feedstock availability. Embracing the “circular bioeconomy” concept, an integrated biorefinery platform of LC biomass can be performed by employing different conversion technologies to obtain multiple valuable products. This review provides an overview of the principles and applications of thermochemical processes (pyrolysis, torrefaction, hydrothermal liquefaction, and gasification) and biochemical processes (pretreatment technologies, enzyme hydrolysis, biochemical conversion processes) involved in LC biomass biorefinery for potential biofuel applications. The engineering perspective of LC biofuel production on separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP) were also discussed.  相似文献   

4.
The development of alternative fuels has been promoted by the extreme fossil fuel consumption brought on by urbanisation and deteriorating pollution. Due to its high energy and combustible qualities, biohydrogen has been perceived as a potential fuel substitute in dealing with issues related to the rising emission of greenhouse gases and global warming. As a source of carbon sequestration and sustainable renewable energy, biohydrogen synthesis by algae species has been prevalent in research scale. This review focuses on the novel and recent metabolic approaches for enhanced algal based biohydrogen production. Pretreatment methods available and scaling techniques used for enhancing the biohydrogen productivity using algal species have been elaborated in the review. Algal characteristics that make them suitable alternative for biohydrogen production are discussed briefly. Various pretreatment methods such as physical, chemical, biological and thermal are elaborated. In addition, the factors involved in influencing the biohydrogen productivity and the metabolic engineering approaches for modifying the pathway in algae are highlighted. Scaling up of process using different types of photobioreactors such as tubular, flat panel, airlift and stirred tank are reported that briefs about merits and demerits of each photobioreactor.  相似文献   

5.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

6.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

7.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

8.
Although various pretreatment methods are employed to promote sludge hydrolysis and thereby promoting methane production in the subsequent microbial electrolysis cell assisted anaerobic digestion (MEC-AD) system, the questions arise are, “which pretreatment method on waste activated sludge (WAS) maximises the sludge hydrolysis and what is the optimal applied voltage on anaerobic digestion (AD) to stimulates the direct interspecies electron transfer (DIET) performance and thereby accelerating the methane production fed with pretreated WAS?” was still unanswered. Herein, firstly, a series of pretreatment methods to hydrolyse and mineralise the organic matter of WAS was performed to evaluate solubilization efficiency and thereafter, the influence of different applied voltages (0.3 V, 0.6 V, and 0.9 V) on coupled MEC-AD reactors fed with pretreated WAS was investigated to apprehend the DIET promotion for methane production. The results indicated that in MEC-AD reactors, the methane yield increased by 27.2%, 44.8%, and 37.3% when the applied voltages were 0.3 V, 0.6 V, and 0.9 V, respectively. Therefore, the alkaline-thermal pretreatment (ATP) enhanced the sludge hydrolysis in WAS, followed by an applied voltage of 0.6 V in the MEC-AD reactor fed with pretreated WAS, enhanced methane production under DIET stimulation induced by the increased abundance of electroactive microorganisms (EAM) and the advanced electron transfer. Besides, the energy balance estimation validates that with an applied voltage of 0.6 V in MEC-AD could achieve higher net energy input.  相似文献   

9.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

10.
In this paper a dynamic membrane electrode assembly water transport model, based on the Finite Volume Method, is presented. The purpose of this paper is to provide an accessible and reproductible model capable of real time simulation. To this aim, a detailed explanation is provided regarding the equations and methods used to compute the physical-based fuel cell model. Additionally, the model is purposely developed using basic code (on Matlab?), to not be limited to a single programming language. Two phase water transport through multi-gaseous porous media (electrodes), interfacial transport, as well as diffusion, convection, and electro-osmosis within the polymer are considered. The main novelty relies in the restructuring of all equations into a single implicit system, which can iteratively be resolved through LU decomposition. This computationally efficient method allows the model to be capable of real-time simulation, by displaying the membrane water content profile evolution on a 3D figure. For nominal PEMFC operating conditions, a dry membrane reaches 35% of its final water concentration value after 2 s, and fully converges after 20 s. The final water content profile displays an 18% gradient (9 and 11 molecules per sulfonic acid sites on the anode and cathode sides, respectively). To calibrate and validate this model, mass transfer (flowmeter) and electrical (ohmmeter) methods have been applied.  相似文献   

11.
This paper presents a grid-connected HRES using a hybrid controller with PHS for optimal power flow control and minimizing the production cost. The novelty of the proposed approach is the joined execution of the SSA and CSA named as SSA-CS are apparently a very new metaheuristic algorithm. Moreover, the proposed method is the cost-effective power production of the microgrids and effective utilization of renewable energy sources without wasting the available energy. Here, the energy sources in particular PV system, WT, MT and battery with PHS are utilized to generate the power of the MG system. In the proposed approach, the required power demand of the energy system is predicted by the ANN technique. After that, the production cost minimization is done in view of the anticipated load demand by utilizing the optimization approaches to be a specific SSA-CS algorithm. The result of the proposed approach is actualized in the MATLAB/Simulink working platform. The performance of the proposed approach is examined by comparing the current methodologies such as SSA and PSO with the proposed SSA-CS approach. The simulation results show that the proposed method generates maximum power and furthermore the proposed framework has less production cost in light of the power demand.  相似文献   

12.
The aim of the present study is to demonstrate the production of hydrogen-rich fuel gas from J. curcas residue cake. A comprehensive experimental study for the production of hydrogen rich fuel gas from J. curcas residue cake via downdraft gasification followed by high temperature water gas shift catalytic treatment has been carried out. The gasification experiments are performed at different equivalence ratios and performance of the process is reported in terms of producer gas composition & its calorific value, gas production rate and cold gas efficiency. The producer gas is cleaned of tar and particulate matters by passing it through venturi scrubber followed by sand bed filter. The clean producer gas is then compressed at 0.6 MPa and bottled into a gas cylinder. The bottled producer gas and a simulated mixture of producer gas are then subjected to high temperature shift (HTS) catalytic treatment for hydrogen enriched gas production. The effect of three different operating parameters GHSV, steam to CO ratio and reactor temperature on the product gas composition and CO conversion is reported. From the experimental study it is found that, the presence of oxygen in the bottled producer gas has affected the catalyst activity. Moreover, higher concentration of oxygen concentration in the bottled producer gas leads to the instantaneous deactivation of the HTS catalyst.  相似文献   

13.
For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW).A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh).Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.  相似文献   

14.
In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm.  相似文献   

15.
Natural H2 in useful quantities is negligible, which makes hydrogen unsuitable as an energy resource compared to other fuels. H2 production by solar, biological, or electrical sources needs more energy than obtained by combusting it. Lower generation of pollutants and better energy efficiency makes hydrogen a potential energy carrier. Hydrogen finds potential applications in automobile and energy production. However, the cost of producing hydrogen is extremely high. Chemical-looping technology for H2 generation has caught widespread attention in recent years. This work, presents some recent findings and provides a comprehensive overview of different chemical looping techniques such as chemical looping reforming, syngas chemical looping, coal direct chemical looping, and chemical looping hydrogen generation method for H2 generation. The above processes are discussed in terms of the relevant chemical reactions and the associated heat of reactions to ascertain the overall endothermicity or exothermicity of the H2 production. We have compared the H2 yield data of different Fe/Ni, spinel and perovskites-based oxygen carriers (OC) reported in previous literature. This review is the first comprehensive study to compare the H2 yield data of all the previously reported oxygen carriers as a function of temperature and redox cycles. In addition, the article summarizes the characteristics and reaction mechanisms of various oxygen carrier materials used for H2 generation. Lastly, we have reviewed the application of Density Function Theory (DFT) to study the effect of various dopant addition on the efficiency of H2 production of the oxygen carriers and discussed ASPEN simulations of different chemical looping techniques.  相似文献   

16.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

17.
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet, the full range of environmental consequences of large-scale hydrogen production remains unclear. Here, prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen, including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework, known human health burdens, the impacts of the world economy, and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary, with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ~2 to ~5 USD/kg hydrogen), while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ~7 to ~3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.  相似文献   

18.
This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration.  相似文献   

19.
The utilization of hydrogen as an energy carrier and reduction agent in important industrial sectors is considered a key parameter on the way to a sustainable future. Steam reforming of methane is currently the most industrially used process to produce hydrogen. One major drawback of this method is the simultaneous generation of carbon dioxide. Methane pyrolysis represents a viable alternative as the basic reaction produces no CO2 but solid carbon besides hydrogen. The aim of this study is the investigation of different molten copper alloys regarding their efficiency as catalytic media for the pyrolysis of methane in an inductively heated bubble column reactor. The conducted experiments demonstrate a strong influence of the catalyst in use on the one hand on the conversion rate of methane and on the other hand on the properties of the produced carbon. Optimization of these parameters is of crucial importance to achieve the economic competitiveness of the process.  相似文献   

20.
The propagation characteristics of the detonation wave in the bifurcated tube with the angular variation range of 30°–90° are simulated with 25% AR as dilution gas for H2/O2 mixture fuel at chemical equivalence ratio using the solver DCRFoam built on the OpenFOAM platform. The diffraction and reflection phenomena of detonation waves passing through bifurcation tubes with different angles are studied and analyzed. The results show that the distance from regular reflection to Mach reflection increases with the increase of the bifurcation angle so that after one reflection, the detonation forms three reflection forms with the angle of the different bifurcation tubes. After the first reflection, the detonation waves are more likely to induce the formation of transverse waves in the low-angle bifurcation tube. The lowest collision pressure after the detonation collides with the upper wall to form a secondary reflection occurs in the bifurcation tube between 50° and 60°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号