首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Memory impairments, which occur regularly across species as a result of aging, disease and psychological insults (for example, stress), constitute a useful area for investigation into the neurobiological basis of learning and memory. Memory researchers have identified the hippocampus as a crucial brain structure involved in key aspects of memory formation. The most widely accepted putative mechanisms of memory storage in this structure are LTP and LTD. The hippocampus is enriched with receptors for corticosterone (a glucocorticoid hormone released in response to stress) and it plays a role in glucocorticoid negative feedback and, therefore, some hippocampal functioning might be particularly susceptible to stress. In support of this view, stress-induced modifications in learning, synaptic plasticity and endangerment of neurons have been seen in the hippocampus. Stress and glucocorticoids appear to exert a metaplastic effect through the modulation of Ca2+ levels. We propose a synaptic model that provides a conceptual scaffold to structure our understanding of the manifold actions of stress on the hippocampus. Accordingly, we suggest that stress-induced metaplasticity could disrupt Ca2+ homeostasis and thus endanger hippocampal neurons.  相似文献   

2.
Multideterminant role of calcium in hippocampal synaptic plasticity   总被引:1,自引:0,他引:1  
Hippocampal CA1 cells possess several varieties of long-lasting synaptic plasticity: two different forms of long-term potentiation (LTP) and at least one form of long-term depression (LTD). All forms of synaptic plasticity are induced by afferent activation, all involve Ca2+ influx, all can be blocked by Ca2+ chelators, and all activate Ca(2+)-dependent mechanisms. The question arises as how different physiological responses can be initiated by activation of the same second messenger. We consider two hypotheses which could account for these phenomena: voltage-dependent differences in cytosolic Ca2+ concentration acting upon Ca2+ substrates of differing Ca2+ affinities and compartmentalization of the Ca2+ and its substrates.  相似文献   

3.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is concentrated in brain, and is particularly enriched in synaptic structures where it comprises 20-50% of all proteins. The abundant nature of CaMKII and its ability to phosphorylate a wide range of substrate proteins, including itself, earmarks it as a protein kinase that may have a vital role in neuronal information processing and memory. A computer model of CaMKII is investigated that incorporates recent findings about the geometrical arrangement of subunits, the mechanism of Ca(2+)-dependent subunit activation, and Ca(2+)-independent autophosphorylation. The model is framed as a system of nonlinear differential equations. It is demonstrated numerically that (1) CaMKII is tuned to be activated by stimulation protocols associated with the induction of long-term potentiation; (2) the observed slow dissociation of trapped Ca2+/calmodulin may require the autonomy site to be protected from dephosphorylation; and (3) Ca(2+)-independent kinase activity is expressed in a manner akin to a graded switch. The model validates current theories concerning how CaMKII may be a Ca2+ pulse frequency detector, a molecular switch, or a mediator of the threshold for long-term synaptic plasticity.  相似文献   

4.
Ca2+ ions are thought to play important roles in processes underlying neuronal plasticity such as synapse stabilization. We employed the Fura-2 technique on brainstem slices of neonatal rats to measure changes in intracellular Ca2+ ([Ca2+]i) in neurons of the lateral superior olive (LSO) in order to analyse whether these cells have functional Ca2+ channels when synaptic maturation takes place. Rises in intracellular Ca2+ could be induced by KCl-evoked depolarizations or by glutamate, but not by glycine or GABA. These results show that Ca2+ channels are present in developing LSO neurones and that many of them, if not all, belong to the voltage-sensitive type. We speculate that these channels play a role during ontogeny by mediating Ca(2+)-dependent mechanisms of synapse stabilization.  相似文献   

5.
Extracellular and intracellular recordings were obtained from striatal neurons in a brain slice preparation in order to characterize the post-receptor mechanisms underlying striatal posttetanic long-term depression (LTD). Striatal LTD was blocked in neurons intracellularly recorded either with 1,2-bis (o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) or with EGTA, calcium (Ca2+) chelators. Intracellular injection of QX-314, a lidocaine derivative that has been shown to block voltage-dependent sodium channels, abolished action potential discharge and blocked striatal LTD. However, under this condition, striatal LTD was restored when, immediately before the delivery of the tetanus, the cell was depolarized at a membrane potential ranging between -30 mV and -20 mV by injecting continuous positive current. Nifedipine (10 microM), a blocker of voltage-dependent L-type Ca2+ channels, blocked striatal LTD. Nifedipine by itself altered neither cortically evoked EPSPs nor input resistance and firing properties of most of the recorded cells. Striatal LTD was also reduced or blocked by incubation of the slices in the presence of the following inhibitors of Ca(2+)-dependent protein kinases: staurosporine (10-50 nM), 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H-7; 10-50 microM), and calphostin C (1 microM). Our findings suggest that generation of striatal LTD requires a Ca2+ influx through voltage-dependent nifedipine-sensitive Ca2+ channels and a sufficient intracellular free Ca2+ concentration. Furthermore, this form of synaptic plasticity seems to involve the activation of Ca(2+)-dependent protein kinases. Different drugs, acting at receptor and/or post-receptor level, may affect this form of synaptic plasticity and might alter the formation of motor memory.  相似文献   

6.
Increased calcium buffering in basal forebrain neurons during aging. J. Neurophysiol. 80: 350-364, 1998. Alterations of neuronal calcium (Ca2+) homeostasis are thought to underlie many age-related changes in the nervous system. Basal forebrain neurons are susceptible to changes associated with aging and to related dysfunctions such as Alzheimer's disease. It recently was shown that neurons from the medial septum and nucleus of the diagonal band (MS/nDB) of aged (24-27 mo) F344 rats have an increased current influx through voltage-gated Ca2+ channels (VGCCs) relative to those of young (1-4. 5 mo) rats. Possible age-related changes in Ca2+ buffering in these neurons have been investigated using conventional whole cell and perforated-patch voltage clamp combined with fura-2 microfluorimetric techniques. Basal intracellular Ca2+ concentrations ([Ca2+]i), Ca2+ influx, Ca2+ transients (Delta[Ca2+]i), and time course of Delta[Ca2+]i were quantitated, and rapid Ca2+ buffering values were calculated in MS/nDB neurons from young and aged rats. The involvement of the smooth endoplasmic reticulum (SER) was examined with the SER Ca2+ uptake blocker, thapsigargin. An age-related increase in rapid Ca2+ buffering and Delta[Ca2+]i time course was observed, although basal [Ca2+]i was unchanged with age. The SER and endogenous diffusible buffering mechanisms were found to have roles in Ca2+ buffering, but they did not mediate the age-related changes. These findings suggest a model in which some aging central neurons could compensate for increased Ca2+ influx with greater Ca2+ buffering.  相似文献   

7.
The role of L-type Ca2+ channels in the induction of synaptic plasticity in hippocampal slices of aged (22-24 months) and young adult (4-6 months) male Fischer 344 rats was investigated. Prolonged 1 Hz stimulation (900 pulses) of Schaffer collaterals, which normally depresses CA3/CA1 synaptic strength in aged rat slices, failed to induce long-term depression (LTD) during bath application of the L-channel antagonist nifedipine (10 microM). When 5 Hz stimulation (900 pulses) was used to modify synaptic strength, nifedipine facilitated synaptic enhancement in slices from aged, but not young, adult rats. This enhancement was pathway-specific, reversible, and impaired by the NMDA receptor (NMDAR) antagonist DL-2-amino-5-phosphonopentanoic acid (AP5). Induction of long-term potentiation (LTP) in aged rats, using 100 Hz stimulation, occluded subsequent synaptic enhancement by 5 Hz stimulation, suggesting that nifedipine-facilitated enhancement shares mechanisms in common with conventional LTP. Facilitation of synaptic enhancement by nifedipine likely was attributable to a reduction ( approximately 30%) in the Ca2+-dependent K+-mediated afterhyperpolarization (AHP), because the K+ channel blocker apamin (1 microM) similarly reduced the AHP and promoted synaptic enhancement by 5 Hz stimulation. In contrast, apamin did not block LTD induction using 1 Hz stimulation, suggesting that, in aged rats, the AHP does not influence LTD and LTP induction in a similar way. The results indicate that, during aging, L-channels can (1) facilitate LTD induction during low rates of synaptic activity and (2) impair LTP induction during higher levels of synaptic activation via an increase in the Ca2+-dependent AHP.  相似文献   

8.
Synaptic changes that underlie associative learning and memory begin with temporally related activity of two or more independent synaptic inputs to common postsynaptic targets. In turn, temporally related molecular events regulate cytosolic Ca2+ during progressively longer-lasting time domains. Associative learning behaviors of living animals have been correlated with changes of neuronal voltage-dependent K+ currents, protein kinase C-mediated phosphorylation and synthesis of the Ca2+ and GTP-binding protein, calexcitin (CE),and increased expression of the Ca2+-releasing ryanodine receptor (type II). These molecular events, some of which have been found to be dysfunctional in Alzheimer's disease, provide means of altering dendritic excitability and thus synaptic efficacy during induction, consolidation and storage of associative memory. Apparently, such stages of behavioral learning correspond to sequential differences of Ca2+ signaling that could occur in spatially segregated dendritic compartments distributed across brain structures, such as the hippocampus.  相似文献   

9.
To understand the cellular processes involved in learning and memory, the cellular responses of neurons to calcium (Ca2+) signals, which can be evoked via synaptic activity, should be examined. A series of investigations in primary cultures of neurons revealed that the regulation of brain-derived neurotrophic factor (BDNF) mRNA expression is mediated by almost the same Ca2+ signaling pathways as that of c-fos mRNA expression. Such early co-activation of both genes in response to Ca2+ signals further suggests that sets of calcium-responsive genes (CaRGs) are concurrently activated by Ca2+ signals. The products encoded by CaRGs should then evoke a variety of physiological responses in neurons with the expression of another set of genes, the products of which are directly involved in the outcomes of neuronal functions. Thus, a cascade of gene expression can be induced by Ca2+ signals evoked via synaptic activity. It is of particular interest to identify the CaRGs and investigate the regulational mechanisms of their expression. A cellular approach using primary cultures of neurons would therefore lead to a better understanding of the intracellular processes involved in learning and memory.  相似文献   

10.
Ca2+/calmodulin-sensitive adenylyl cyclase plays a role in several forms of synaptic plasticity and learning. To understand how cellular signals from neuronal activity during behavioral stimuli might be integrated by adenylyl cyclase, we have characterized the response of type I adenylyl cyclase to transient Ca2+ stimuli. Stimulation by a several second Ca2+ stimulus is delayed, rising to a peak after the Ca2+ stimulus has ended. We attempted to identify the site of the persistent Ca2+ signal that enabled adenylyl cyclase stimulation to increase after free Ca2+ had declined. Free calmodulin itself displayed no persistent activation by Ca2+ and was unable to activate adenylyl cyclase if exposed to low Ca2+ solution <1 s before reaching adenylyl cyclase. In contrast, activation of the calmodulin-adenylyl cyclase complex persisted for seconds after Ca2+ stimulus. Activation decayed with a time constant of 6 or 13 s depending on assay conditions. These results suggest that the calmodulin-adenylyl cyclase complex can serve as a site of cellular memory for a Ca2+ transient that has ended even before adenylyl cyclase is fully activated.  相似文献   

11.
The effects of various calcium (Ca2+) loads imposed through whole-cell patch electrodes on dentate gyrus granule cells were investigated on synaptic GABAA receptor-channels. The kinetics of spontaneous inhibitory postsynaptic currents (sIPSCs) were similar when recorded without any exogenous Ca2+ buffers in the patch electrode or with up to 30 mM BAPTA in the pipette. Unbuffered Ca2+ concentrations of 20-100 microM in the patch pipettes induced a gradual prolongation of miniature IPSC (mIPSC) decays over the course of the recording (10-40 min) with no apparent change in their rise times, peak amplitudes, or frequency of occurrence. This effect was not mimicked by other divalent cations such as strontium. Infusion into the cells of free ionic Ca2+ concentrations buffered with various affinity chelators in the pipette had more pronounced effects on synaptic GABAA currents. Free ionic Ca2+ buffered in the range of 200-400 nM with BAPTA prolonged the decay time constant of mIPSCs. Introducing buffered Ca2+ into the neurons in excess of 1 microM, with a relatively low affinity buffer such as Br2BAPTA, resulted in a marked inhibition of mIPSCs. A similar effect was observed following release of Ca2+ from intracellular stores induced by caffeine (10 mM). We conclude that Ca2+ has a biphasic effect on synaptic GABAA receptor-channels. A high affinity potentiation, consistent with a prolongation of channel burst duration, and a low affinity depression of channel activity both contribute to a complex regulation of synaptic GABAA receptors by [Ca2+]i that has a profound bearing on cellular mechanisms of plasticity and pathological alterations in neuronal excitability.  相似文献   

12.
Discusses parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine, have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. The authors discuss examples of modulation of voltage-gated Ca2+ channels and Ca2+-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. The authors review examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
The cadherins are a family of cell-cell adhesion molecules that mediate Ca2+-dependent homophilic interactions between cells and transduce signals by interacting with cytoplasmic proteins. In the hippocampus, immunostaining combined with confocal microscopy revealed that both neural- (N-) and epithelial- (E-) cadherin are present at synaptic sites, implying a role in synaptic function. Pretreatment of hippocampal slices with antibodies (Abs) raised against the extracellular domain of either N-cad or E-cad had no effect on basal synaptic properties but significantly reduced long-term potentiation (LTP). Infusion of antagonistic peptides containing the His-Ala-Val (HAV) consensus sequence for cadherin dimerization also attenuated LTP induction without affecting previously established LTP. Because the intense synaptic stimulation associated with LTP induction might transiently deplete extracellular Ca2+ and hence potentially destabilize cadherin-cadherin interactions, we examined whether slices could be protected from inhibition by N-cad Abs or HAV peptides by raising the extracellular Ca2+ concentration. Indeed, we found that high extracellular Ca2+ prevented the block of LTP by these agents. Taken together, these results indicate that cadherins are involved in synaptic plasticity, and the stability of cadherin-cadherin bonds may be regulated by synaptic stimulation.  相似文献   

14.
Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm, induces Ras signalling in response to Ca2+ influx and activation of G-protein-coupled receptors in vitro, suggesting that it plays a role in neurotransmission and plasticity in vivo. Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact. Electrophysiological measurements in the basolateral amygdala reveal that long-term plasticity is abnormal in mutant mice. In contrast, Ras-GRF mutants do not reveal major deficits in spatial learning tasks such as the Morris water maze, a test that requires hippocampal function. Consistent with apparently normal hippocampal functions, Ras-GRF mutants show normal NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation in this structure. These results implicate Ras-GRF signalling via the Ras/MAP kinase pathway in synaptic events leading to formation of long-term memories.  相似文献   

15.
The effects of tri-n-butyltin chloride (TBT) on ionic homeostasis on isolated trout hepatocytes were investigated by flow cytometry (FCM), using the Ca(2+)-sensitive and pH-sensitive fluorescent probes Indo-1 and SNARF-1, respectively. Cell viability was monitored concurrently. Treatment of hepatocytes with 1 and 5 microM TBT caused a rapid and sustained elevation of cytosolic free Ca2+ concentration [Ca2+]i and an important cytoplasmic acidification. These changes were dependent upon TBT concentration and were maintained over 60 min, the maximum exposure period investigated. At 0.5 microM TBT, there was a slight but not significant increase in [Ca2+]i and a significant reduction in intracellular pH (pHi) only after 60 min of exposure. A rise in [Ca2+]i and cytoplasmic acidification were observed before loss of viability was detectable. Experiments carried out in Ca(2+)-free medium suggest that TBT mainly mobilizes Ca2+ from intracellular stores in trout hepatocytes. The cytoplasmic acidification following TBT exposure seems to be caused by the combination of intracellular Ca2+ mobilization and by direct action of TBT. The present results suggest that ionic homeostasis perturbations could be early events in the mechanism of cell injury by TBT.  相似文献   

16.
The role of Ca2+ in controlling cell processes (e.g. mitosis) presents an enigma in its ubiquity and selectivity. Intracellular free Ca2+ (Ca2+i) is an essential regulator of specific biochemical and physiological aspects of mitosis (e.g. nuclear envelope breakdown (NEB)). Changes in Ca2+i concentrations during mitosis in second cell-cycle sand dollar (Echinaracnius parma) blastomeres were imaged as Ca(2+)-dependent luminescence of the photoprotein aequorin with multi-spectral analytical video microscopy. Photons of this luminescence were seen as bright observable blobs (BOBs). Spatiotemporal patterns of BOBs were followed through one or more cell cycles to detect directly changes in Ca2+i, and were seen to change in a characteristic fashion prior to NEB, the onset of anaphase chromosome movement, and during cytokinesis. These patterns were observed from one cell cycle to the next in a single cell, from cell to cell, and from egg batch to egg batch. In both mitosis and synaptic transmission increases in Ca2+i concentration occurs in discrete, short-lived, highly localized pulses we name quantum emission domains (QEDs) within regions we named microdomains. Signal and statistical optical analyses of spatiotemporal BOB patterns show that many BOBs are linked by constant displacements in space-time (velocity). Linked BOBs are thus nonrandom and are classified as QEDS. Analyses of QED patterns demonstrated that the calcium signals required for NEB are nonrandom, and are evoked by an agent(s) generated proximal to a Ca2+i-QED; models of waves, diffusible agonists and Ca(2+)-activated Ca2+ release do not fit pre-NEB cell data. Spatial and temporal resolution of this multispectral approach significantly exceeds that reported for other methods, and avoids the perturbations associated with many fluorescent Ca2+ reporters that interfere with cells being studied (Ca(2+)-buffering, UV toxicity, etc.). Spatiotemporal patterns of Ca2+i-QED can control so many different processes, i.e. specific frequencies used to control particular processes. Predictive and structured patterns of calcium signals (e.g. a language expressed in Ca2+) may selectively regulate specific Ca(2+)-dependent cellular processes.  相似文献   

17.
The vestibular pathway of the mollusk Hermissenda crassicornis mediates a reflexive, unconditioned response to disorientation, clinging, that has been conserved during evolution even to the emergence of our own species. This response becomes associated with a visual stimulus (mediated by a precisely ordered visual-vestibular synaptic network) according to principles of Pavlovian conditioning that are also followed in human learning. It is not entirely surprising therefore that molecular and biophysical cascades responsible for this associative learning appear to function in both mollusks and mammals. In brief, combinational elevation of (Ca2+)i, diacylglycerol, and arachidonic acid activates protein kinase C to phosphorylate the Ca2+ and guanosine triphosphate-binding protein, cp20 (now called calexcitin (Nelson T, et al. Proc Natl Acad Sci USA 1996;93:13808-13)), which potently inactivates postsynaptic voltage-dependent K+ currents and thereby increases synaptic weight. Longer term changes included rearrangement of synaptic terminals and modified protein synthesis. This cascade has also been implicated in other associative-learning paradigms (e.g., spatial maze, olfactory discrimination) and as a pathophysiologic target in early Alzheimer's disease. Recent molecular biologic experiments also demonstrate the dependence of associative memory (but not long-term potentiation) on voltage-dependent K+ currents. Theoretic learning models based on these findings focus on dendritic spine clusters and yield computer implementations with powerful pattern-recognition capabilities.  相似文献   

18.
BACKGROUND: The precise sites and mechanisms of action of volatile anesthetics remain unknown. Recently, several integral membrane proteins have been suggested as potential targets to which anesthetics can bind at hydrophobic regions. Impairment of cell Ca2+ homeostasis has been postulated as one of the possible mechanisms of anesthetic action. To test these hypotheses, the authors selected the human erythrocyte Ca(2+)-ATPase as a model membrane protein. This enzyme is an integral membrane protein that is instrumental in maintaining Ca2+ homeostasis in the cell in which it is the sole Ca(2+)-transporting system. Thus, any functional alteration of the Ca(2+)-ATPase by anesthetics may lead to serious perturbations in Ca(2+)-regulated processes in the cell. METHODS: The Ca(2+)-ATPase activity was measured as a function of increased concentration of four volatile anesthetics: halothane, isoflurane, enflurane, and desflurane. RESULTS: All four anesthetics significantly inhibited the Ca(2+)-ATPase activity in a dose-dependent manner. The half-maximal inhibition occurred at anesthetic concentrations from 0.3 to 0.7 vol% at 37 degrees C, which, except for desflurane, is a clinically relevant concentration range. The greater the clinical potency of the volatile anesthetics studied, the less was the concentration required to inhibit the Ca(2+)-ATPase activity. The inhibition was less at 25 degrees C than at 37 degrees C, which is consistent with direct interactions of the nonpolar interfaces of the enzyme with the nonpolar of the portions of the anesthetics. CONCLUSIONS: The authors' findings indicate that the Ca(2+)-ATPase is a suitable model for investigating the mechanism of action of volatile anesthetics on the integral membrane protein, and that this inhibition may be specific.  相似文献   

19.
Long-term potentiation (LTP) is a form of synaptic plasticity that can be revealed at numerous hippocampal and neocortical synapses following high-frequency activation of N-methyl--aspartate (NMDA) receptors. However, it was not known whether LTP could be induced at the mossy fiber-granule cell relay of cerebellum. This is a particularly interesting issue because theories of the cerebellum do not consider or even explicitly negate the existence of mossy fiber-granule cell synaptic plasticity. Here we show that high-frequency mossy fiber stimulation paired with granule cell membrane depolarization (-40 mV) leads to LTP of granule cell excitatory postsynaptic currents (EPSCs). Pairing with a relatively hyperpolarized potential (-60 mV) or in the presence of NMDA receptor blockers [5-amino--phosphonovaleric acid (APV) and 7-chloro-kynurenic acid (7-Cl-Kyn)] prevented LTP, suggesting that the induction process involves a voltage-dependent NMDA receptor activation. Metabotropic glutamate receptors were also involved because blocking them with (+)-alpha-methyl-4-carboxyphenyl-glycine (MCPG) prevented potentiation. At the cytoplasmic level, EPSC potentiation required a Ca2+ increase and protein kinase C (PKC) activation. Potentiation was expressed through an increase in both the NMDA and non-NMDA receptor-mediated current and by an NMDA current slowdown, suggesting that complex mechanisms control synaptic efficacy during LTP. LTP at the mossy fiber-granule cell synapse provides the cerebellar network with a large reservoir for memory storage, which may be needed to optimize pattern recognition and, ultimately, cerebellar learning and computation.  相似文献   

20.
Leech neurons exposed to salines containing inorganic Ca(2+)-channel blockers generate rhythmic bursts of impulses. According to an earlier model, these blockers unmask persistent Na+ currents that generate plateau-like depolarizations, each triggering a burst of impulses. The resulting increase in intracellular Na+ activates an outward Na+/K+ pump current that contributes to burst termination. We tested this model by examining systematically the effects of six transition metal ions (Co2+, Ni2+, Mn2+, Cd2+, La3+, and Zn2+) on the electrical activity of neurons in isolated leech ganglia. Each ion induced bursting activity, but the amplitude, form, and persistence of bursting differed with the ion used and its concentration relative to Ca2+. All ions tested suppressed chemical synaptic transmission between identified motor neurons, consistent with block of voltage-dependent Ca2+ currents in these cells. In addition, a strong correlation between suppression of synaptic transmission and burst amplitudes was obtained. Finally, burst duration was increased and the rate of repolarization decreased in reduced K+ saline, as expected for pump-dependent repolarization. These results provide further support for the hypothesis that a novel form of oscillatory electrical activity driven by persistent Na+ currents and the Na+/K+ pump occurs in leech ganglia exposed to Ca(2+)-channel blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号