首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The miscibility of poly(D ,L -lactide) (PDLLA) and poly(p-vinylphenol) (PVPh) blends has been studied by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). Phase separation was observed in blends over a wide composition range. A PDLLA-rich phase was found to coexist with an almost pure PVPh phase. The quenched blend samples showed two glass transitions (Tgs), except for a blend with a low PVPh content. However, the Tg value of the PDLLA-rich phase showed a gradual increase with increasing PVPh content. No evidence of interassociation (hydrogen bond formation) between PDLLA and PVPh was found by FTIR. The phase behavior of the blends was simulated using an association model. The results suggested that the equilibrium constant of interassociation between PDLLA and PVPh was small. The phase compositions of the two separated phases were calculated using Fox, Gordon-Taylor, and Couchman equations. The amount of PVPh in the PDLLA-rich phase increased with increasing PVPh content in the blend. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 811–816, 1998  相似文献   

2.
Summary Miscibility of blends of poly(ether imide) (PEI) and poly(ethylene terephthalate) (PET) were studied by differential scanning calorimetry (DSC). Single and composition-dependent Tg's are observed over the entire composition range, indicating that the blends are miscible in the amorphous region. The overall crystallization rate of PET in the blends decreased with increasing the PEI content. The interaction energy density B, which was calculated from the melting point depression of the blends using Nishi-Wang equation, was-5.5 cal/cm3.  相似文献   

3.
Poly(caprolactone) (PCL) was blended with poly(chlorostyrene) (PSCI) and chlorinated polypropylene (PPCl). A single glass transition temperature Tg was found for these mixtures, indicating their miscibility. PCL crystallizes in these blends when the chlorinated polymer content is not too high. Otherwise, Tg becomes higher than the melting point of PCL and the high viscosity of the medium hinders the crystallization. The miscibility of PCL/PPCI blends cannot be due to hydrogen bonding between the α-hydrogens of the chlorinated polymer and the carbonyl group of the polyester since PPCI does not have available a large number of α-hydrogens. It is suggested that a dipoledipole ? C?O…Cl? C? interaction is responsible for the observed miscibility phenomenon and that this interaction is probably also responsible for the miscibility between all other polyesterchlorinated polymer mixtures. Finally, it was observed that poly(α-methyl-α-n-propyl-β-propiolactone), poly(α-methyl-α-ethyl-β-propiolactone) and poly(valerolactone) are not miscible with PSCI or PPCl, despite the fact that they are miscible with poly(vinyl chloride).  相似文献   

4.
Summary In the absence of significant tranesterification, blends of poly(ethylene terephthalate) and poly(bisphenol-A carbonate) were found to be almost completely immiscible over the range of compositions studied. Although the observed behavior was sometimes erratic, poly(bisphenol-A carbonate) appears to exert a significant influence on PET melting behavior and normalized heat of fusion.  相似文献   

5.
Miscibility of biodegradable poly(ethylene succinate) (PES)/poly(vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) in this work. PES is found to be miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. Spherulitic morphology and the growth rates of neat and blended PES were investigated by optical microscopy (OM). Both neat and blended PES show a maximum growth rate value in the crystallization temperature range of 45-65 °C, with the growth rate of neat PES being higher than that of blended PES at the same crystallization temperature. The overall crystallization kinetics of neat and blended PES was also studied by DSC and analyzed by the Avrami equation at 60 and 65 °C. The crystallization rate decreases with increasing the temperature for both neat and blended PES. The crystallization rate of blended PES is lower than that of neat PES at the same crystallization temperature. However, the Avrami exponent n is almost the same despite the blend composition and crystallization temperature, indicating that the addition of PVPh does not change the crystallization mechanism of PES but only lowers the crystallization rate.  相似文献   

6.
7.
J.Z YiS.H Goh 《Polymer》2003,44(6):1973-1978
Poly(methylthiomethyl methacrylate) (PMTMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PMTMA and PVA was examined by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the thioether sulfur atoms of PMTMA, and the involvement of the carbonyl groups of PMTMA in interactions is not significant. The measurements of proton spin-lattice relaxation time reveal that PMTMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. In comparison, we have previously found that PMTMA is miscible with poly(p-vinylphenol) and the two polymers mix intimately on a scale of 1-3 nm.  相似文献   

8.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The miscibility of blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(vinylpyrrolidone) (PVP) was studied by differential scanning calorimetry (DSC) through the analysis of the glass transition temperature Tg. The dependence of Tg with the annealing temperature was determined for PPO and PVP samples of different molecular weights. The phase diagrams for blends containing three different PVP samples were established. Blends of PPO and PVP were found to be miscible for composition lower than 30% and higher than 65% of PVP. A inmiscibility window between 30 and 65% of PVP is also described.  相似文献   

10.
Miscibility and morphology of poly(ethylene 2,6‐naphthalate)/poly(pentamethylene terephthalate)/poly(ether imide) (PEN/PPT/PEI) blends were studied by differential scanning calorimetry (DSC), optical microscopy (OM), proton nuclear magnetic resonance imaging (1H‐NMR), and wide‐angle X‐ray diffraction (WAXD). OM and DSC results from ternary blends revealed the immiscibility of PEN/PPT/PEI blends, but ternary blends of all compositions were phase‐homogeneous following heat treatment at 300°C for over 60 min. Annealing samples at 300°C yielded an amorphous blend with a clear and single Tg at the final state. Experimental data from 1H‐NMR revealed that PEN/PPT copolymers (ENPT) were formed by the so‐called transesterification. The effect of transesterification on glass transition and crystallization was discussed in detail. The sequence structures of the copolyester were identified by triad analysis, which showed that the mean sequence lengths became shorter and the randomness increased with heating time. The results reveal that a random copolymer improved the miscibility of the ternary blends, in which, the length of the homo segments in the polymer chain decreased and the crystal formation was disturbed because of the irregularity of the structure, as the exchange reaction proceeded. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3840–3849, 2006  相似文献   

11.
12.
The miscibility and crystallization kinetics of the blends of poly(trimethylene terephthalate) (PTT) and amorphous poly(ethylene terephthalate) (aPET) have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that PTT/aPET blends were miscible in the melt. Thus, the single glass transition temperature (Tg) of the blends within the whole composition range and the retardation of crystallization kinetics of PTT in blends suggested that PTT and aPET were totally miscible. The nucleation density of PTT spherulites, the spherulitic growth, and overall crystallization rates were depressed upon blending with aPET. The depression in nucleation density of PTT spherulites could be attributed to the equilibrium melting point depression, while the depression in the spherulitic growth and overall crystallization rates could be mainly attributed to the reduction of PTT chain mobility and dilution of PTT upon mixing with aPET. The underlying nucleation mechanism and growth geometry of PTT crystals were not affected by blending, from the results of Avrami analysis. POLYM. ENG. SCI., 47:2005–2011, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
J.Z. Yi  S.H. Goh 《Polymer》2005,46(21):9170-9175
Poly(n-propyl methacrylate) (PPMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PPMA and PVA was examined by Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the carbonyl groups of PPMA. The measurements of proton spin-lattice relaxation time reveal that PPMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. A small negative interaction parameter value has been obtained by melting point depression measurement.  相似文献   

14.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

15.
Y KongJ.N Hay 《Polymer》2002,43(6):1805-1811
Poly(ethylene terephthalate)/polycarbonate blends were produced in a twin-screw extruder with and without added transesterification catalyst, lanthanum acetyl acetonate. The miscibility of the blends was studied from their crystallisation behaviour and variation in glass transition temperature with composition using differential scanning calorimetry, scanning electron microscopy and change in mechanical properties. The blends prepared without the catalyst showed completely immiscible over all compositions, while those prepared in the presence of the catalyst showed some limited miscible. The presence of PC inhibited the crystallisation of PET but this was much greater in the blends prepared in the presence of catalyst suggesting that some reaction had taken place between the two polyesters. The tensile properties showed little differences between the two types of blends.  相似文献   

16.
Miscibility has been investigated in blends of poly(butylene succinate) (PBSU) and poly(vinyl phenol) (PVPh) by differential scanning calorimetry in this work. PBSU is miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer–polymer interaction parameter, obtained from the melting depression of PBSU using the Nishi–Wang equation, is composition dependent, and its value is always negative. This indicates that PBSU/PVPh blends are thermodynamically miscible in the melt. Preliminary morphology study of PBSU/PVPh blends was also studied by optical microscopy (OM). OM experiments show the spherulites of PBSU become larger with the PVPh content, indicative of a decrease in the nucleation density, and the coarseness of PBSU spherulites increases too with increasing the PVPh content in the blends.  相似文献   

17.
The miscibility and crystallization behavior of poly(ether ether ketone ketone) (PEEKK)/poly(ether imide) (PEI) blends prepared by melt‐mixing were investigated by differential scanning calorimetry. The blends showed a single glass transition temperature, which increased with increasing PEI content, indicating that PEEKK and PEI are completely miscible in the amorphous phase over the studied composition range (weight ratio: 90/10–60/40). The cold crystallization of PEEKK blended with PEI was retarded by the presence of PEI, as is apparent from the increase of the cold crystallization temperature and decrease of the normalized crystallinity for the samples anealed at 300°C with increasing PEI content. Although the depression of the apparent melting temperature of PEEKK blended with PEI was observed, there was no evidence of depression in the equilibrium melting temperature. The analysis of the isothermal crystallization at 313–321°C from the melt of PEEKK/PEI (100/0, 90/10, and 80/20) blends suggested that the retardation of crystallization of PEEKK is caused by the increase of the crystal surface free energy in addition to the decrease of the mobility by blending PEI with a high glass transition temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 769–775, 2001  相似文献   

18.
The “miscibility” and esterification in poly(styrene-co-maleic anhydride) (PSTMA)/phenoxy blends were investigated by DSC and FTIR. The blends prepared by casting exhibited a single composition-dependent but broad Tg during the first scanning. The broadness of the Tg transition range is due to the presence of microphases in the blends, which acquired some stability because of the hydrogen-bonding interactions with the continuous phase. However, the blends displayed two distinct Tgs during the second scanning, which can be attributed to phenoxy-rich and PSTMA-rich phases dispersed one in another at a scale larger than the initial one. To investigate the effect of esterification, the samples subjected previously to two scannings have been additionally heat-treated several times between 30 and 220°C and annealed each time at 220°C for increasing periods of time. During the additional scannings, the two Tgs identified during the second scanning increased with increasing annealing time but remained distinct. The fact that the fraction soluble in tetrahydrofuran decreased with increasing annealing time indicates that crosslinking due to esterification has occurred in both phases. The two phases generated after the first scanning were stabilized by the esterification reaction at the interfaces. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:913–919, 1998  相似文献   

19.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

20.
The miscibility and phase behavior of poly(4-vinylphenol-co-methyl methacrylate) (PVPhMMA50) containing 50% of methyl methacrylate with random copolymers of poly(styrene-co-4-vinylpyridine) (PS4VPy) containing 5, 15, 30, 40, and 100% of 4-vinylpyridine, respectively, were investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). It was shown that for a composition of 4-vinylpyridine less than 30%, all blends of PVPhMMA50/PS4VPy are immiscible, characterized by the apparition of two glass transitions (Tg) over their entire composition range. However, above this composition, a single Tg has been observed in all the blends of PVPhMMA50 and PS4VPy. When the amount of vinylpyridine exceeds to 40% in PS4VPy, the obtained Tgs of PVPhMMA50/PS4VPy blends were found to be significantly higher than those observed for each individual component of the mixture indicating that these blends are able to form interpolymer complexes. FTIR analysis reveals the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and pyridyl groups and intensifies when the amount of 4VPy is increased in PS4VPy copolymers. Furthermore, the quantitative FTIR study carried out for PVPhMMA50/PS4VPy blends was also performed for the vinylphenol and vinylpyridine functional groups. These results were also confirmed by SEM study. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号