共查询到20条相似文献,搜索用时 62 毫秒
1.
针对入侵检测中存在样本少、特征多、难于将实际经验与现有算法有机结合的问题,将交互式遗传算法应用到入侵检测技术中,并结合SVM的特点,设计出改进后的分类识别算法。实验证明,将SVM与交互式遗传算法相结合应用于入侵检测领域中,算法有效、可行,而且能获得很好的检测率。 相似文献
2.
基于遗传算法的SVM带权特征和模型参数优化 总被引:1,自引:3,他引:1
建立在统计学习理论和结构风险最小原则上的支持向量机(SVM)在理论上保证了模型的最大泛化能力,因此将支持向量机理论应用于入侵检测领域可以获得很好的效果.但是在应用中也存在如何对网络数据进行特征编码和选择适当的支持向量机模型参数的问题.在分析了特征编码和模型参数对分类器识别精度的影响基础上,提出用遗传算法建立支持向量机带权特征和分类器模型参数的自适应优化算法,并在网络入侵检测中成功的运用算法.最后,使用KDD CUP 1999数据进行的仿真实验表明了算法的正确有效性. 相似文献
3.
入侵检测实质上是一个分类的问题,对于提高分类精度是十分重要的.支持向量机(SVM)是一个功能强人的用于解决分类问题的工具.基于支持向量机的入侵检测精度较高,但如何获得更高的精度是一个新的问题.本文利用基于支持向量机和遗传算法(GA)的入侵检测来解决这些问题.我们首先利用遗传算法进行特征选择及优化,然后使用支持向量机模型... 相似文献
4.
建立在统计学习理论和结构风险最小原则上的支持向量机(SVM)在理论上保证了模型的最大泛化能力,因此将支持向量机理论应用于入侵检测领域可以获得很好的效果.但是它在应用中也存在如何对网络数据进行特征选择和选择适当的支持向量机模型参数的问题.在分析了特征选择和SVM模型参数对分类器识别精度的影响基础上,提出用遗传算法建立支持向量机特征选择和分类器模型参数的自适应优化算法,并把它应用到网络入侵检测中去.最后,使用KDD CUP 99数据进行的仿真实验表明了算法的正确有效性. 相似文献
5.
6.
7.
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。 相似文献
8.
入侵检测系统已经成为网络安全技术的重要组成部分。然而,传统的异常入侵检测技术需要通过对大量训练样本的学习才能达到较高的检测精度,而大量训练样本集的获取在现实网络环境中是比较困难的。本文研究在网络入侵检测中采用基于支持向量机(SVM)的主动学习算法,解决训练样本获取代价过大带来的问题。通过基于SVM的主动学习算
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
9.
10.
11.
传统的入侵检测方法在面对多变的网络结构时缺乏可扩展性,而且在未知的攻击类型面前也缺乏适应性。因此,提出一种新的检测方法——基于遗传聚类的网络异常检测(NAIDGC)算法。对聚类中心采用二进制编码,把每一个点到它们各自的聚类中心的欧几里得距离的总和作为相似度量,通过遗传算法寻找聚类中心。计算机仿真结果显示了此算法对入侵检测是有效的。 相似文献
12.
李佳 《计算机应用与软件》2015,(2):311-314
为了提高网络入侵检测的正确率,提出一种混合入侵杂草HIWO(hybrid invasive weed optimization)算法优化SVM的网络入侵检测模型(HIWO-SVM)。该模型将SVM参数编码为入侵杂草,并以网络入侵检测率作为杂草种子适应度函数,然后通过模拟杂草入侵种子的空间扩散、生长、繁殖和竞争等过程找到SVM的最优参数。在寻优过程中引入遗传算法交叉操作以增强HIWO算法跳出局部极值的能力,最后根据最优参数建立网络入侵检测模型。在Matlab 2012平台采用KDD CUP 99数据集仿真测试,结果表明HIWO-SVM可以获得满意的网络入侵检测效果。 相似文献
13.
网络异常检测技术是入侵检测系统中不可或缺的部分。然而目前的入侵检测系统普遍存在检测率不高,误报率过高等问题,从而难以在实际的企业中大规模采用。针对之前的检测技术检测效果不佳的问题,提出基于SVM回归和改进D-S证据理论的入侵检测方法。该方法是将支持向量机回归的分类融合应用到网络异常行为分析中,在SVM参数选择时采用交叉验证和深度优先搜索算法进行优化选择,并通过融合证据理论,建立网络异常检测模型。通过仿真实验表明,该模型能够有效地提高入侵检测性能,缩短检测时间。 相似文献
14.
蔡勇 《计算机应用与软件》2009,26(3)
针对网络入侵检测系统因自身性能缘故在高速网络上难以有效地进行实时入侵检测,设计了一种基于动态流量负载均衡的分流式入侵检测系统模型,模型中的数据分流器将捕获的网络数据包在数据链路层转发至多个探测机进行处理,并通过动态负载均衡分流算法实现数据的均衡分流.该设计方法能够充分利用系统的计算资源,具有良好的扩展性、动态流量均衡性和检测性能.实验结果表明,通过分流器分流到各个探测器的数据包个数基本上能平均分配,系统的检测分析能力随探测机数量的增加而明显增强. 相似文献
15.
阐述了基于神经网络LMBP算法的入侵检测方法,在对网络中的IP数据包进行分析处理以及特征提取的基础上,采用神经网络进行训练或判别,以达到对未知数据包进行检测的目的.由传统的BP算法与LMBP算法的分析与比较得到:LMBP算法解决了传统BP算法的收敛速度慢、易陷入局部最小的问题.实验结果表明,LMBP算法的学习速度快,收敛速度快,将这个算法应用于基于神经网络的入侵检测,效果良好,判别准确率高,为实现高效准确的入侵检测提供了一种有效的方法. 相似文献
16.
提出了一种基于遗传算法优化支持向量机的故障诊断模型.它利用遗传算法对支持向量机同时对传统的时域特征参量子集和核参数同时优化,以达到选择最优的设备故障主导特征参数组合的目的,实现对机器不同类型故障的识别.对齿轮故障诊断的结果表明它有效提高了多分类支持向量机的故障分类准确性. 相似文献
17.
近几年来千兆以太网的出现,对传统入侵检测的监测速度提出了新的考验.通过对传统的基于网络的入侵检测的分析,提出了一种基于多层次特征匹配的网络入侵检测模式,有效地提高了入侵检测的速度,并且易于对不同级别的入侵提出不同的告警. 相似文献
18.
提高入侵检测系统的检测率并降低误报率是一个重要的研究课题。在对稀有类分类问题研究的基础上,将集成学习应用到入侵检测中,采用对高速网络数据进行分流的检测模型,把网络数据包按照协议类型进行分类,然后交给各个检测器,每个检测器以C4.5分类器作为弱分类器,用集成学习AdaBoost算法构造一个加强的总检测函数。进一步用SMOTE技术合成稀有类,在KDD‘99数据集上进行了仿真实验,结果表明这种方法可有效提高稀有类的检测率。 相似文献
19.
提出了一种基于混合核函数支持向量机和遗传算法的识别方法,用于人脸识别。该方法结合了支持向量机的学习性能和遗传算法的寻优性能,与传统的方法相比,具有速度快、误差少、效率高的特点,在实验中能够较精确地对人脸进行识别。 相似文献
20.
介绍集成神经网络的基本概念及其算法理论,提出基于遗传算法的集成神经网络入侵检测方法,并以KDDCUP99作为数据源给出应用该方法进行入侵检测的性能.通过与单个神经网络的比较,说明基于遗传算法的集成神经网络检测方法能克服单个分类算法的缺陷,提高入侵检测系统的检测率. 相似文献