首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
应用GPU集群加速计算蛋白质分子场   总被引:1,自引:2,他引:1  
针对生物化学计算中采用量子化学理论计算蛋白质分子场所带来的巨大计算量的问题,搭建起一个GPU集群系统,用来加速计算基于量子化学的蛋白质分子场.该系统采用消息传递并行编程环境(MPI)连接集群各结点,以开放多线程OpenMP编程标准作为多核CPU编程环境,以CUDA语言作为GPU编程环境,提出并实现了集群系统结点中GPU和多核CPU协同计算的并行加速架构优化设计.在保持较高计算精度的前提下,结合MPI,OpenMP和CUDA混合编程模式,大大提高了系统的计算性能,并对不同体系和规模的蛋白质分子场模拟进行了计算分析.与相应的CPU集群、GPU单机和CPU单机计算方法对比,该GPU集群大幅度地提高了高分辨率复杂蛋白质分子场模拟的计算效率,比CPU集群的平均计算加速比提高了7.5倍.  相似文献   

2.
张延松  张宇  王珊 《软件学报》2018,29(3):883-895
以MapD为代表的图分析数据库系统通过GPU、Phi等新型众核处理器来支持高性能分析处理,在面向复杂数据模式时连接操作仍然是重要的性能瓶颈.近年来,异构处理器逐渐成为高性能计算的主流平台,内存连接性能的研究从多核CPU平台扩展到新兴的众核处理器,但众多的研究成果并未系统地揭示连接算法性能、连接数据集大小、硬件架构之间的内在联系,难以为未来异构处理器平台的数据库提供连接平台优化选择策略.本文以面向多核CPU、Xeon Phi、GPU处理器平台的内存连接优化技术为目标,通过优化内存哈希表设计,实现以向量映射替代哈希映射操作,消除哈希代价对内存连接算法的影响,从而更加准确地测量内存连接算法在多核CPU的cache大小、Xeon Phi的cache大小、Xeon Phi的并发多线程、GPU的SIMT(单指令多线程)机制等硬件相关因素影响下的性能特征.实验结果表明,缓存与并发多线程机制是提高内存连接算法性能的重要影响因素.缓存机制对于满足cache大小的连接操作具有性能优势,而GPU的并发多线程机制则在较大表的连接操作中具有较高的性能,Xeon Phi则在满足其L2 cache大小的连接操作中具有最高性能.实验结果揭示了内存连接操作性能与异构处理器硬件特性的联系,为未来异构处理器平台内存数据库查询优化器提供了优化策略.  相似文献   

3.
CPU/GPU异构系统具有很大的发展潜力,深入研究CPU/GPU异构平台的并行优化,可实现系统整体计算能力的最大化。通过对CPU/GPU任务划分的优化来平衡CPU和GPU的负载,可提高计算资源的利用率,缩短计算任务的执行时间;通过对GPU线程划分的优化,可使GPU获得更高的速度。从而提高系统整体性能。  相似文献   

4.
海量数据背景下传统GIS栅格数据空间分析计算效率已经不能满足快速计算的需求,为此以地形因子计算为例,分析并测试了基于共享内存模型的CPU多核并行模式与基于流处理器模型的GPU众核并行模式的计算性能,在此基础上详细实现了负载均衡的设备间任务划分,进行CPU与GPU异构混合的并行技术改良研究。实验结果表明,基于相同的单机硬件环境,与多核共享内存模型或众核流处理器的单一计算平台并行方案相比,CPU/GPU异构混合并行计算方法对于栅格数据分析具有更好的加速效果。  相似文献   

5.
摘要:针对采用单CPU CT图像重建时间长,采用CPU集群重建成本及能耗高的问题,本文提出了CPU多线程+GPU的异构重建模型。这种模型采用CPU多线程流水线模式,将整个任务分解为若干个处理阶段,相邻的两个阶段之间以循环缓存连接,上一阶段完成一次计算任务后将数据放到循环缓存里,然后继续下一次的计算任务,下一阶段探测到循环缓存里有数据后,从缓存里取出数据开始计算。各个任务是并行处理任务的,针对某一耗时瓶颈模块再采用GPU并行加速,充分发挥CPU和GPU的计算资源。CPU多线程+GPU模型相对于CPU多线程模型加速16.45倍,相对于串行CT图像重建加速20.5倍以上。将CPU多线程+GPU模型重建的图像与CPU串行程序重建的CT图像比较,数据结果在误差范围内,满足实验设计要求。本文提出的图像重建模型采用成本较低的GPU显卡就实现了性能大幅提升,大大降低了CT图像重建系统的成本及功耗,而成本及功耗的降低会引起CT医疗诊断费用的降低,最终惠及广大病患。  相似文献   

6.
针对多核CPU和GPU环境下图的深度优先搜索问题,提出多核CPU中实现并行DFS的新算法,通过有效利用内存带宽来提高性能,且当图增大时优势越明显.在此基础上提出一种混合方法,为DFS每一分支动态地选择最佳的实现:顺序执行;两种不同算法的多核执行;GPU执行.混合算法为每种大小的图提供相对更好的性能,且能避免高直径图上的最坏情况.通过比较多CPU和GPU系统,分析底层架构对DFS性能的影响.实验结果表明,一个高端single-socket GPU系统的DFS执行性能相当于一个高端4-socket CPU系统.  相似文献   

7.
随着主流芯片厂商的大力推广,多核处理器已经变得越来越普及.以往串行化的程序设计方法在多核环境下已经不能充分利用多核CPU的资源.怎样高效地利用多核处理器的计算性能,已经成为软件开发者面临的新的课题.文中在传统的多线程编程基础上,根据Intel处理器的微架构(Microarchitecture)特点,以及Linux内核提供的CPU绑定技术,通过采用Cache优化和CPU亲和力(CPU affinity)优化,消除了多核环境下局部多线程Cache行竞争和伪共享,减少了线程的调度开销,提高了多线程程序的运行效率.  相似文献   

8.
GPU以及集成式的CPU-GPU架构凭借其强大的并行处理能力和可编程流水线方式,已经成为数据库领域的研究热点。为充分利用异构平台的并行计算能力,提升列存储系统的查询性能,在研究异构平台结构特性的基础上,首先提出了GPU多线程平台上进行连接的数据划分策略--ICMD(Improved CMD),利用GPU流处理器并行处理各个子空间上的连接,然后利用任务评估分配模型实现查询负载的动态分配,使得查询操作能在多核CPU、GPU上高效并行执行。同时利用片上全局同步机制、局部内存重用技术优化ICMD连接算法。最后采用SSB基准测试集测试,结果表明:Intel? HD Graphics 4600平台上并行连接查询相比于CPU版本获得了35%的性能提升,较GPU查询引擎的Ocelot性能上提升了18%。  相似文献   

9.
针对集群显示系统中存在的CPU多核闲置、GPU利用不足、CPU与GPU结合困难等问题,研究了CPU多核多线程处理、GPU并行处理及CPU+GPU整合运算等技术,提出并构建了CPU+GPU集群并行显示系统,提升了集群并行显示系统的综合运算能力,实验结果表明CPU+GPU集群并行显示技术是有效的,为海量信息高速显示提供了有效的解决方案。  相似文献   

10.
稀疏矩阵与向量相乘SpMV是求解稀疏线性系统中的一个重要问题,但是由于非零元素的稀疏性,计算密度较低,造成计算效率不高。针对稀疏矩阵存在的一些不规则性,利用混合存储格式来进行SpMV计算,能够提高对稀疏矩阵的压缩效率,并扩大其适应范围。HYB是一种广泛使用的混合压缩格式,其性能较为稳定。而随着GPU并行计算得到普遍应用以及CPU日趋多核化,因此利用GPU和多核CPU构建异构并行计算系统得到了普遍的认可。针对稀疏矩阵的HYB存储格式中的ELL和COO存储特征,把两部分数据分别分割到CPU和GPU进行协同并行计算,既能充分利用CPU和GPU的计算资源,又能够发挥CPU和GPU的计算特性,从而提高了计算资源的利用效能。在分析CPU+GPU异构计算模式的特征的基础上,对混合格式的数据分割和共享方面进行优化,能够较好地发挥在异构计算环境的优势,提高计算性能。  相似文献   

11.
wpa/wpa2-psk高速暴力破解器的设计和实现   总被引:1,自引:0,他引:1       下载免费PDF全文
针对基于单核CPU的wpa/wpa2-psk暴力破解器破解速度慢的缺点,提出一种分布式多核CPU加GPU的高速暴力破解器.采用分布式技术将密钥列表合理地分配到各台机器上,在单机上利用多核CPU和GPU形成多个计算核心并行破解,利用GPU计算密集型并行任务强大的计算能力提高破解速度.实验结果证明,该暴力破解器的破解速度相...  相似文献   

12.
基于CUDA的高效IDEA加密算法设计与实现   总被引:1,自引:0,他引:1  
为了实现一个高效的加密算法,本文充分利用图形处理器(GPU)的并行处理能力,提出基于CUDA实现IDEA加密算法的方法,对该方法的设计和实现进行详细的阐述,并通过实验与传统的基于CPU的实现方法进行性能比较,基于CUDA的IDEA实现速度上远远高于基于CPU的实现.  相似文献   

13.
The operational processing of remote sensing data usually requires high-performance radiative transfer model (RTM) simulations. To date, multi-core CPUs and also Graphical Processing Units (GPUs) have been used for highly intensive parallel computations. In this paper, we have compared multi-core and GPU implementations of an RTM based on the discrete ordinate solution method. To implement GPUs, the original CPU code has been redesigned using the C-oriented Compute Unified Device Architecture (CUDA) developed by NVIDIA.  相似文献   

14.
Computing systems should be designed to exploit parallelism in order to improve performance. In general, a GPU (Graphics Processing Unit) can provide more parallelism than a CPU (Central Processing Unit), resulting in the wide usage of heterogeneous computing systems that utilize both the CPU and the GPU together. In the heterogeneous computing systems, the efficiency of the scheduling scheme, which selects the device to execute the application between the CPU and the GPU, is one of the most critical factors in determining the performance. This paper proposes a dynamic scheduling scheme for the selection of the device between the CPU and the GPU to execute the application based on the estimated-execution-time information. The proposed scheduling scheme enables the selection between the CPU and the GPU to minimize the completion time, resulting in a better system performance, even though it requires the training period to collect the execution history. According to our simulations, the proposed estimated-execution-time scheduling can improve the utilization of the CPU and the GPU compared to existing scheduling schemes, resulting in reduced execution time and enhanced energy efficiency of heterogeneous computing systems.  相似文献   

15.
在异构资源环境中高效利用计算资源是提升任务效率和集群利用率的关键。Kuberentes作为容器编排领域的首选方案,在异构资源调度场景下调度器缺少GPU细粒度信息无法满足用户自定义需求,并且CPU/GPU节点混合部署下调度器无法感知异构资源从而导致资源竞争。综合考虑异构资源在节点上的分布及其硬件状态,提出一种基于Kubernetes的CPU/GPU异构资源细粒度调度策略。利用设备插件机制收集每个节点上GPU的详细信息,并将GPU资源指标提交给调度算法。在原有CPU和内存过滤算法的基础上,增加自定义GPU信息的过滤,从而筛选出符合用户细粒度需求的节点。针对CPU/GPU节点混合部署的情况,改进调度器的打分算法,动态感知应用类型,对CPU和GPU应用分别采用负载均衡算法和最小最合适算法,保证异构资源调度策略对不同类型应用的正确调度,并且在CPU资源不足的情况下充分利用GPU节点的碎片资源。通过对GPU细粒度调度和CPU/GPU节点混合部署情况下的调度效果进行实验验证,结果表明该策略能够有效进行GPU调度并且避免资源竞争。  相似文献   

16.
黄玉龙  邹循进  刘奎  苏本跃 《计算机应用》2014,34(11):3112-3116
现有Top-k查询优化算法无法充分利用图形处理器(GPU)强大的并行吞吐量及时获取查询结果,为此提出了一种基于统一计算设备架构(CUDA)模型的大规模分段查询算法。通过划分查询过程以及采用分段并行处理策略,该算法可最大限度地提升查询过程中的计算和比较效率。实验结果表明,与4线程多核优化算法相比,所提算法具有明显的性能优势,当有序列表数量为6,遍历步长为120时,性能达到最优,此时比多核算法快40倍。  相似文献   

17.
Cloud platforms composed of multi-core CPU and many-core Graphics Processing Unit (GPU) have become powerful platforms to host incremental CPU–GPU workloads. In this paper, we study the problem of optimizing the CPU resource management while keeping the quality of service (QoS) of games. To this end, we propose vHybrid, a lightweight user mode runtime framework, in which we integrate a scheduling algorithm for GPU and two algorithms for CPU to efficiently utilize CPU resources with the control accuracy of QoS. vHybrid can maintain the desired QoS with low CPU utilization, while being able to guarantee better QoS performance with little overhead. Our evaluations show that vHybrid saves 37.29% of CPU utilization with satisfactory QoS for hybrid workloads, and reduces three orders of magnitude for QoS fluctuations, without any impact on GPU workloads.  相似文献   

18.
徐启迪  刘争红  郑霖 《计算机应用》2022,42(12):3841-3846
随着通信技术的发展,通信终端逐渐采用软件的方式来兼容多种通信制式和协议。针对以计算机中央处理器(CPU)作为运算单元的传统软件无线电架构,无法满足高速无线通信系统如多进多出(MIMO)等宽带数据的吞吐率要求问题,提出了一种基于图形处理器(GPU)的低密度奇偶校验(LDPC)码译码器的加速方法。首先,根据GPU并行加速异构计算在GNU Radio 4G/5G物理层信号处理模块中的加速表现的理论分析,采用了并行效率更高的分层归一化最小和(LNMS)算法;其次,通过使用全局同步策略、合理分配GPU内存空间以及流并行机制等方法减少了译码器的译码时延,同时配合GPU多线程并行技术对LDPC码的译码流程进行了并行优化;最后,在软件无线电平台上对提出的GPU加速译码器进行了实现与验证,并分析了该并行译码器的误码率性能和加速性能的瓶颈。实验结果表明,与传统的CPU串行码处理方式相比,CPU+GPU异构平台对LDPC码的译码速率可提升至原来的200倍左右,译码器的吞吐量可以达到1 Gb/s以上,特别是在大规模数据的情况下对传统译码器的译码性有着较大的提升。  相似文献   

19.
针对目前医学图像配准技术无法满足临床实时性需求问题,对基于图形处理器(GPU)加速的医学图像配准技术进行综述探讨。首先对GPU通用计算进行概述,再以医学图像配准基本框架为主线,对近年来基于GPU加速的医学图像配准技术在国内外发展现状进行深入研究,并针对正电子发射型计算机断层显像(PET)和电子计算机断层扫描(CT)数据的非线性配准问题,分别基于中央处理器(CPU)和GPU平台进行配准实验,通过实验结果的对比,体现GPU加速配准技术的优越性。基于GPU加速的自由形变(FFD)和归一化互信息(NMI)结合的非线性配准方法配准后互信息值略低于CPU平台的配准结果,但其配准速度是CPU平台的12倍。基于GPU加速的配准算法在保持配准精度的基础上,配准速度都得到了很大的提升。  相似文献   

20.
Widely adumbrated as patterns of parallel computation and communication, algorithmic skeletons introduce a viable solution for efficiently programming modern heterogeneous multi-core architectures equipped not only with traditional multi-core CPUs, but also with one or more programmable Graphics Processing Units (GPUs). By systematically applying algorithmic skeletons to address complex programming tasks, it is arguably possible to separate the coordination from the computation in a parallel program, and therefore subdivide a complex program into building blocks (modules, skids, or components) that can be independently created and then used in different systems to drive multiple functionalities. By exploiting such systematic division, it is feasible to automate coordination by addressing extra-functional and non-functional features such as application performance, portability, and resource utilisation from the component level in heterogeneous multi-core architectures. In this paper, we introduce a novel approach to exploit the inherent features of skeleton-based applications in order to automatically coordinate them over heterogeneous (CPU/GPU) multi-core architectures and improve their performance. Our systematic evaluation demonstrates up to one order of magnitude speed-up on heterogeneous multi-core architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号