首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
镜像对称性是人脸的一个直观明显的自然特性,结合该特性在完全二维主成分分析的基础上提出完全二维对称主成分分析的人脸识别方法。该方法通过镜像变换得到奇对称样本和偶对称样本,分别对奇偶对称样本进行完全二维主成分分析,通过奇偶加权因子对奇偶对称样本的特征矩阵进行组合,并采用最近邻距离分类器分类。在ORL人脸数据库上的实验表明,该方法有较好的识别效果。  相似文献   

2.
基于对称二维主成分分析的人脸识别   总被引:1,自引:0,他引:1  
提出一种基于人脸直观上镜像对称的算法--对称二维主成分分析,并成功应用于人脸识别.该算法引入镜像变换,根据奇偶分解原理,分别生成奇偶对称样本,再分别进行二维PCA变换,生成奇偶本征空间.根据选择性集成的思想,从奇偶本征空间挑选出更具有鉴别信息的本征向量构造人脸特征提取的本征空间.提取人脸图像的各奇偶对称的二维主成分特征进行识别.理论分析与实验证明,该算法既扩大样本容量,又提高识别率,同时该算法对光照变换有一定的不敏感性.  相似文献   

3.
融合类别信息的二维主成分分析人脸识别算法   总被引:1,自引:0,他引:1  
二维主成分分析(2DPCA)已被成功地应用在人脸识别领域,但是这种2DPCA是无监督方法,投影没有考虑到类别信息,在一定程度上影响了识别性能.因此提出一种新的2DPCA,它利用训练样本的类别标记来生成K-L变换的产生矩阵,融合了样本的类别信息,从而使2DPCA的识别性能更好.基于ORL和Yale人脸数据库的实验表明该方法比传统的2DPCA的识别性能更高.  相似文献   

4.
丁明勇 《计算机应用》2008,28(1):122-124
在二维主成分分析算法中引入了对称性思想,提出了基于对称的二维主成分分析算法(STDPCA)。在该算法中,首先把人脸图像分解成奇对称图像和偶对称图像,然后分别在这两类图像中进行二维主成分分析,提取所需要的特征。该算法不仅有效利用了二维主成分分析算法的优点,而且也考虑了人脸对称性的特点,因此在人脸识别中有较高的识别率。在著名人脸库ORL、YALE中的实验证明了该算法的有效性。  相似文献   

5.
提出了一种用小波包变换(WPT)和二维四元数主成分分析(2DQPCA)的灰度人脸图像识别算法。将对人脸灰度图像经小波包变换得到的分解系数构成四元数矩阵,通过2DQPCA实现数据降维并构造四元数特征空间,将其划分为若干子块,对每个子块根据最近邻算法进行分类并对分类结果投票,根据投票结果实现最终的人脸识别。该方法与PCA等传统方法在Orl、Yale等四个人脸数据库上的实验结果比较表明,该方法在识别率上有明显优势,且对光照、表情变化具有鲁棒性。  相似文献   

6.
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加.  相似文献   

7.
提出了基于BP神经网络的主分量人脸识别算法。该算法首先用小波变换对人脸图像进行小波分解,形成低频小波子图,然后用主分量分析法构造特征脸子空间,将人脸图像在特征空间的投影作为BP神经网络的输入,由BP神经网络和后验概率转换器构成人脸识别器。针对ORL人脸库的实验结果表明该方法具有较高的识别率。  相似文献   

8.
张睿  于忠党 《计算机工程》2008,34(9):216-218
为了克服光照变化较大的情况对识别率的影响,提出基于二阶双向二维主成分分析(Sec-(2D)2PCA)的人脸识别方法。丢弃提取人脸图像的(2D)2PCA的前几个反映光照信息的主成分。在剩余图像中再次使用(2D)2PCA方法。Yale人脸库B和Yale人脸库上的试验结果表明,该方法在识别性能上优于2DPCA、(2D)2PCA、Sec-2DPCA方法。  相似文献   

9.
提出一种将对称主成分分析(Symmetrical Principal Component Analysis)思想应用于人脸特征提取的算法.实验结果表明,该方法减少了计算量,提高了系统的识别率.  相似文献   

10.
双向二维主成分分析((2D)~2PCA)易受异常值影响,鲁棒性差,且所提取的特征向量是非稀疏的。针对上述不足,提出基于L_1范数的稀疏双向二维主成分分析方法(2D)~2PCA-L1S。在(2D)~2PCA目标函数中加入L_1范数约束,以提高算法的抗干扰能力,同时引入弹性网约束,通过Lasso与Ridge惩罚函数实现稀疏性。在Feret和Yale数据库中进行基于最近邻的人脸分类、人脸重构和基于粒子群优化SVM参数的人脸识别实验,结果表明,相较于2DPCA、(2D)~2PCA、(2D)~2PCA-L1等主成分分析方法,该方法能准确提取人脸主要信息,人脸识别和人脸重构效果较好。  相似文献   

11.
一种基于改进BP神经网络的PCA人脸识别算法   总被引:1,自引:0,他引:1  
人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传统BP算法的不足提出一种基于改进BP神经网络的PCA人脸识别算法,该算法采用PCA算法提取图像的主要特征,并结合一种新的权值调整方法改进BP算法进行图像分类识别。仿真实验表明,通过使用该算法对ORL人脸数据库的图像进行识别,其结果比传统算法具有更快的收敛速度和更高的识别率。  相似文献   

12.
传统的基于神经网络的人脸识别算法直接从灰度空间获取人脸图像数据,其中含有大量的噪声和冗余信息,降低了识别率且延长了识别时间。提出一种基于稀疏表达和神经网络的人脸识别算法:首先通过KSVD算法将样本变换至稀疏空间,然后运用LDA算法将稀疏编码变换至子空间,最后输至RBF神经网络进行分类。在ORL和Yale人脸库上的实验结果表明,该算法比其他算法具有更高的识别率和更快的识别速度,且具有较强的鲁棒性和泛化能力。  相似文献   

13.
基于神经网络集成的多视角人脸识别   总被引:15,自引:0,他引:15  
人脸在图像深度方向上发生偏转时,即使同一对象的人脸图像也会发生极大的变化。在此,将神经网络集成应用于多视角人脸识别,所用的人脸特征通过多视角特征脸分析获得。为每一视角的特征空间各训练一个神经网络,并利用另一个神经网络对其进行结合。利用训练好的神经网络集成进行识别时不仅不需进行偏转角度估计预处理,而且还可以在给出识别结果的同时给出角度估计信息。实验结果表明,该方法的识别精度高于根据精确的偏转角度估计信息挑选最佳单一神经网络所能达到的效果。  相似文献   

14.
基于BP神经网络的人脸识别方法   总被引:25,自引:1,他引:25  
人脸自动识别是计算机模式识别领域的一个活跃课题,有着十分广泛的应用前景。文中提出了基于BP神经网络的人脸识别方法,论述了人脸图像矢量的特征压缩问题、网络隐含层神经元数选取问题、网络输入矢量的标准化处理问题以及网络连接权值选取问题。对于18人、每人12幅图像组成的脸图像数据库做识别实验,实验结果表明文中所设计的神经网络分类器比常用的最近邻分类器有效地降低了识别错误率。  相似文献   

15.
针对人脸识别中出现的维数过高和计算复杂而导致的识别率低的问题,提出一种基于加权DWT(Discrete Wavelet Transform)和DCT(Discrete Cosine Transform)的粒子群神经网络人脸识别新算法。该算法首先用小波变换对人脸图像进行分解,去除对角线分量影响,提取加权低频和高频的离散余弦变换系数作为特征向量,最后利用粒子群优化BP神经网络进行分类识别。在ORL人脸库上验证了该算法的有效性和可行性。  相似文献   

16.
表情识别技术是计算机从静态表情图像或动态表情图像中识别出特定的表情,是实现人机交互的基础。提出一种融合卷积神经网络(CNN)与SIFT特征的人脸表情识别方法。通过图像预处理得到规范化的表情图像;采用视觉词袋模型将图像提取的SIFT特征作进一步处理,将得到的图像特征向量作为局部特征,CNN提取的特征作为全局特征,全局特征用以描述表情的整体差异,局部特征用以描述表情的局部差异;将提取出的两组特征融合后采用Softmax分类。与流形稀疏表示(Manifold Sparse Representation,MSR)及3DCNN等方法在CK+及FER2013数据集上的实验表明,该方法是一种有效的表情识别方法。  相似文献   

17.
针对传统地基云图云状识别模型精度较低的问题,提出一种基于K均值算法的选择性神经网络集成的方法。该方法以BP神经网络集成模型为基础,采用K均值聚类算法选择部分有差异性的个体神经网络进行集成,建立了云状分类模型。通过对云图样本进行仿真实验,结果表明所提出的算法相对于单个BP神经网络及传统的BP_AdaBoost集成算法用于云图的分类,能有效地提高云图识别分类的精度。  相似文献   

18.
由于多进制相位调制子类信号相似度高,传统的信号识别方法和机器学习算法难以实现特征的自动提取和准确的分类。针对此问题,提出一种基于时频图和深度卷积神经网络的识别算法。将实测信号通过短时傅里叶变换转换成时频图作为实验数据,并设计一个33层的卷积神经网络ReSENet对特征进行自动提取和调制识别。该网络融合了经典模型ResNext和SENet的优点,能通过深度学习和特征重定向学习到数据中复杂抽象的特征。为进一步提高ReSENet的性能,分别从梯度下降算法、激活函数等方面对模型进行优化。与现有方法相比,该算法在对多进制相位调制信号识别上有更优的分类表现。实验结果显示,最终的识别准确率达到99.9%,验证了该算法的有效性。  相似文献   

19.
董慧颖  曹仁帅 《信息与控制》2003,32(Z1):753-755
汽车牌照识别系统中影响识别率的行汽车牌照识别,其识别率很难提高;即使是加上基于结构的拓扑特征,识别率在一定程度上有所提高,但也提高不多.本文采用基于模糊极小极大神经网络的识别算法进行汽车牌照识别,识别率有了很大程度的提 .高.  相似文献   

20.
为解决人脸特征提取过程中局部特征缺失的问题,借助局部二值模式(LBP)与方向梯度直方图(HOG)提出一种基于多级纹理特征融合的深度信念网络人脸识别算法。以提取局部纹理特征以及边缘纹理特征为出发点,对人脸图像进行三级纹理特征提取。使用MB-LBP提取初级纹理特征;在此基础上进行改进的CS-LBP图像特征提取作为二级纹理特征;使用HOG算子在二级纹理特征上完成三级纹理特征提取。将二级和三级纹理特征直方图顺序串联融合后输入到深度信念网络(DBN)逐层贪婪训练,优化网络参数,并用优化的网络在ORL、YELA人脸标准库中进行测试,识别率均在92%以上。该算法与传统算法(SVM、PCA)相比较拥有更好的人脸识别效果,同时也表明了局部纹理特征的改善为识别过程的特征提取提供强有力的保障,为人脸识别的进一步研究开拓新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号