首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dendritic cells (DC) that are stimulated with inflammatory mediators can maturate and migrate from nonlymphoid tissues to lymphoid organs to initiate T cell-mediated immune responses. This migratory step is closely related to the maturation of the DC. In an attempt to identify chemokine receptors that might influence migration and are selectively expressed in mature DC, we have discovered that the chemokine receptor, EBI1/CCR7, is strikingly up-regulated upon maturation in three distinct culture systems: 1) mouse bone marrow-derived DC, 2) mouse epidermal Langerhans cells, and 3) human monocyte-derived DC. The EBI1/CCR7 expressed in mature DC is functional because ELC/MIP-3beta, recently identified as a ligand of EBI1/CCR7, induces a rise in intracellular free calcium concentrations and directional migration of human monocyte-derived mature DC (HLA-DRhigh, CD1a(low), CD14-, CD25+, CD83+, and CD86high) in a dose-dependent manner, but not of immature DC (HLA-DRlow, CD1a(high), CD14-, CD25-, CD83-, and CD86-). In contrast, macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-3 (MCP-3), and RANTES are active on immature DC but not on mature DC. Thus, it seems likely that MIP-1alpha, MCP-3, and RANTES can mediate the migration of immature DC located in peripheral sites, whereas ELC/MIP-3beta can direct the migration of Ag-carrying DC from peripheral inflammatory sites, where DC are stimulated to up-regulate the expression of EBI1/CCR7, to lymphoid organs. It is postulated that different chemokines and chemokine receptors are involved in DC migration in vivo, depending on the maturation state of DC.  相似文献   

2.
Thymus and activation-regulated chemokine (TARC) is a recently identified CC chemokine that is expressed constitutively in thymus and transiently in stimulated peripheral blood mononuclear cells. TARC functions as a selective chemoattractant for T cells that express a class of receptors binding TARC with high affinity and specificity. To identify the receptor for TARC, we produced TARC as a fusion protein with secreted alkaline phosphatase (SEAP) and used it for specific binding. By stably transfecting five orphan receptors and five known CC chemokine receptors (CCR1 to -5) into K562 cells, we found that TARC-SEAP bound selectively to cells expressing CCR4. TARC-SEAP also bound to K562 cells stably expressing CCR4 with a high affinity (Kd = 0.5 nM). Only TARC and not five other CC chemokines (MCP-1 (monocyte chemoattractant protein-1), RANTES (regulated upon activation, normal T cells expressed and secreted), MIP-1alpha (macrophage inflammatory protein-1alpha), MIP-1beta, and LARC (liver and activation-regulated chemokine)) competed with TARC-SEAP for binding to CCR4. TARC but not RANTES or MIP-1alpha induced migration and calcium mobilization in 293/EBNA-1 cells stably expressing CCR4. K562 cells stably expressing CCR4 also responded to TARC in a calcium mobilization assay. Northern blot analysis revealed that CCR4 mRNA was expressed strongly in human T cell lines and peripheral blood T cells but not in B cells, natural killer cells, monocytes, or granulocytes. Taken together, TARC is a specific functional ligand for CCR4, and CCR4 is the specific receptor for TARC selectively expressed on T cells.  相似文献   

3.
Cells of the dendritic lineage are thought to be among the first cells infected after mucosal exposure to HIV. In this study, we have identified the presence of multiple chemokine receptors on dendritic cells (DC) that may function as coreceptors for HIV entry. DC effectively used CCR5 for entry of macrophage (M)-tropic isolates. CCR3, the eotaxin receptor, initially identified on eosinophils, is expressed on DC and may be used as an entry coreceptor by certain dual-tropic strains. CXCR4 was not expressed on DC, although SDF-1 induced a calcium flux and DC could be infected by T cell line (T)-tropic HIV. Our findings provide evidence for the presence of a non-CXCR4 SDF-1 receptor on DC that is used mainly by T-tropic strains of HIV. DC from individuals homozygous for a 32-bp deletion of the CCR5 gene are also infectable with M-tropic strains of HIV-1, and this infection is inhibited by stromal cell-derived factor (SDF)1, suggesting that this receptor can also be used by M-tropic HIV for entry. Delineation of the spectrum of coreceptor usage on DC may offer new approaches to interfere with the initiation and propagation of HIV infection.  相似文献   

4.
The capacity of dendritic cells (DC) to initiate immune responses is dependent on their specialized migratory and tissue homing properties. Chemotaxis and transendothelial migration (TEM) of DC were studied in vitro. Immature DC were generated by culture of human monocytes in granulocyte-macrophage colony-stimulating factor and IL-4. These cells exhibited potent chemotaxis and TEM responses to the CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, and monocyte chemotactic protein-3, and weak responses to the CC chemokine MIP-3beta and the CXC chemokine stromal cell-derived factor (SDF)-1alpha. Maturation of DC induced by culture in lipopolysaccharide, TNF-alpha or IL-1beta reduced or abolished responses to the former CC chemokines but markedly enhanced responses to MIP-3beta and SDF-1alpha. This correlated with changes in chemokine receptor expression: CCR5 expression was reduced while CXCR4 expression was enhanced. These findings suggest two stages for regulation of DC migration in which one set of chemokines may regulate recruitment into or within tissues, and another egress from the tissues.  相似文献   

5.
CCR5 is a chemokine receptor expressed by T cells and macrophages, which also functions as the principal coreceptor for macrophage (M)-tropic HIV-1 strains to enter the host cells. In this study, we aim to better understand the ligand-binding profiles of CCR5 and the chemokine-receptor usage on leukocyte cells. We found that MCP-2 could bind to CCR5 transfectants with high affinity and cross-compete effectively with RANTES, MIP-1alpha, and MIP-1beta. MCP-2 is a true agonist for CCR5, eliciting a robust chemotactic response in CCR5 transfectants similar to that of the three known CCR5 ligands and exhibiting cross-desensitization with RANTES in the Ca2+ flux response. MCP-4 also bound to CCR5 with high affinity and was efficiently displaced by other CCR5 ligands. However, MCP-4 only partially displaced the binding of radiolabeled MIP-1alpha and caused a chemotactic response only at high concentrations. Furthermore, MCP-2 inhibited the binding of the M-tropic HIV-1 gp120 envelope glycoprotein to CCR5 and HIV-1 infection of peripheral blood mononuclear cells. More importantly, we found that MCP-2 could bind and elicit chemotaxis in CD3-activated and IL-2-maintained T cells, and most of these functions could be specifically inhibited by the anti-CCR5 mAb 2D7, whereas the responses mediated by MIP-1alpha or MCP-4 were only partially inhibited by 2D7. Thus, although MCP-2 can bind to and signal through CCR1, CCR2b, and CCR5, among which both CCR2 and CCR5 are expressed at high levels on activated T cells, it appears to preferably utilize CCR5 on these cells. In contrast, MIP-1alpha and MCP-4 seem to activate multiple receptors on the same cells.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) infection of the murine cornea results in a tissue-destructive inflammatory response. In this study we show that virus infection induces the synthesis of macrophage inflammatory protein-2 (MIP-2), MIP-1alpha, and monocyte chemoattractant protein-1 (MCP-1). However, only the production of MIP-2 and MIP-1alpha coincided with the influx of leukocytes into the cornea. IL-10 treatment markedly suppressed chemokine message and protein synthesis in vivo. Local administration of IL-10 also dramatically reduced the number of T cells and neutrophils migrating into the cornea and suppressed the severity of corneal disease. The inflammatory response could also be suppressed by the passive transfer of neutralizing antibody to MIP-1alpha but not MCP-1. We conclude that local IL-10 administration can suppress chemokine synthesis, thereby ameliorating corneal disease. Furthermore, our results indicate that MIP-1alpha plays a major role in herpes stromal keratitis development, whereas MCP-1 does not.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

8.
Staphylococcal superantigens (SAgs) are very potent T cell mitogens, but they can also activate monocytes by binding directly to MHC class II molecules in a manner independent of TCR coengagement. Induction of proinflammatory cytokines and chemokine expression in monocytes by superantigens has recently been reported. Here we report that superantigen stimulation of human peripheral blood monocytes results in a rapid, dose-dependent, and specific down-regulation of chemokine (macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-1 and MIP-1beta) binding sites (e.g., CCR1, CCR2, and CCR5), which correlates with a concomitant hyporesponsiveness of human monocytes to these CC chemokine ligands. This down-regulation occurs 15-30 min following superantigen stimulation and is specific to chemokine receptors, in that binding and responsiveness of monocytes to the chemoattractant formyl-tripeptide FMLP are not affected. We further demonstrate that SAg-induced down-modulation of chemokine binding and monocyte hyporesponsiveness to the chemokines MIP-1alpha, monocyte chemotactic protein-1, and MIP-1beta is mediated through cellular protein tyrosine kinases, and the down-modulation can be mimicked by an MHC class II-specific mAb. Additionally, our observations indicate that SAg-induced loss of chemokine binding and monocyte responsiveness is probably mediated by secreted serine proteinases. Bacterial SAg-induced down-modulation of chemokine responsiveness represents a previously unrecognized strategy by some bacteria to subvert immune responses by affecting the intricate balance between chemokine and chemokine receptor expression and function.  相似文献   

9.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

10.
Different strains of human immunodeficiency virus type 1 (HIV-1) vary markedly in the ability to infect cells of the monocyte/macrophage (M/M) lineage. M/M are generally resistant to infection with T-cell-tropic (T-tropic) strains of HIV-1. Recently, the chemokine receptors CCR5 and CXCR4 were identified as cofactors for fusion/entry of macrophage- and T-tropic strains of HIV-1, respectively. To investigate the mechanisms of resistance of M/M to T-tropic HIV-1 infection, we examined a number of subclones of the U937 promonocytic cell line. We found that certain subclones of U937 (plus clones) could, while others (minus clones) could not, support replication of T-tropic strains of HIV-1. We demonstrate that (i) both minus and plus clones support HIV-1 replication when transfected with an infectious molecular cDNA clone of a T-tropic HIV-1; (ii) minus clones do not, but plus clones do, efficiently support fusion with cells expressing HIV-1 IIIB Env; (iii) both plus and minus clones (with the exception of one clone) express physiologically functional CXCR4 protein as well as CD4 on the cell surface; (iv) introduction of CXCR4 into the CXCR4-negative clone does not restore fusogenicity with or susceptibility to T-tropic HIV-1; and (v) a ligand (stromal cell-derived factor 1) for or a monoclonal antibody (12G5) to CXCR4 does not effectively inhibit HIV-mediated cell-to-cell fusion of U937 cells. These data indicate that resistance to T-tropic HIV-1 infection of U937 minus clones occurs at fusion/ entry events and that expression of functional CXCR4 and CD4 is not a sole determinant for susceptibility to T-tropic HIV-1 infection; furthermore, they suggest that other factors are positively or negatively involved in HIV-mediated cell-to-cell fusion in U937 promonocytic cells.  相似文献   

11.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1beta and SDF-1alpha, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

12.
Chemokines are cytokines that activate and induce the migration of leukocytes. Stroma-derived factor-1 (SDF-1) is a novel chemokine that blocks the entry of T-tropic HIV-1 mediated by fusin/CXCR4/LESTR (leukocyte-derived seven-transmembrane domain receptor). In this work we demonstrate that SDF-1 triggers increases in intracellular calcium and inhibits the proliferation of myeloid progenitor cell line 32D. By contrast, SDF-1 neither triggers a calcium response nor affects the proliferation of the myeloid progenitor cell line 32D-GR that is deficient in CXCR4. Responsiveness to SDF-1 was rescued by transfection of 32D-GR cells with a cDNA encoding the human CXCR4. The data indicate that SDF-1 induces myelosuppression by activation of CXCR4. The constitutive production of SDF-1 by bone marrow stromal cells argues for a major role of SDF-1 on the regulation of myelopoiesis.  相似文献   

13.
The chemokine receptor CXCR4 is the major coreceptor used for cellular entry by T cell- tropic human immunodeficiency virus (HIV)-1 strains, whereas CCR5 is used by macrophage (M)-tropic strains. Here we show that a small-molecule inhibitor, ALX40-4C, inhibits HIV-1 envelope (Env)-mediated membrane fusion and viral entry directly at the level of coreceptor use. ALX40-4C inhibited HIV-1 use of the coreceptor CXCR4 by T- and dual-tropic HIV-1 strains, whereas use of CCR5 by M- and dual-tropic strains was not inhibited. Dual-tropic viruses capable of using both CXCR4 and CCR5 were inhibited by ALX40-4C only when cells expressed CXCR4 alone. ALX40-4C blocked stromal-derived factor (SDF)-1alpha-mediated activation of CXCR4 and binding of the monoclonal antibody 12G5 to cells expressing CXCR4. Overlap of the ALX40-4C binding site with that of 12G5 and SDF implicates direct blocking of Env interactions, rather than downregulation of receptor, as the mechanism of inhibition. Thus, ALX40-4C represents a small-molecule inhibitor of HIV-1 infection that acts directly against a chemokine receptor at the level of Env-mediated membrane fusion.  相似文献   

14.
We tested chemokine receptor subset usage by diverse, well-characterized primary viruses isolated from peripheral blood by monitoring viral replication with CCR1, CCR2b, CCR3, CCR5, and CXCR4 U87MG.CD4 transformed cell lines and STRL33/BONZO/TYMSTR and GPR15/BOB HOS.CD4 transformed cell lines. Primary viruses were isolated from 79 men with confirmed human immunodeficiency virus type 1 (HIV-1) infection from the Chicago component of the Multicenter AIDS Cohort Study at interval time points. Thirty-five additional well-characterized primary viruses representing HIV-1 group M subtypes A, B, C, D, and E and group O and three primary simian immunodeficiency virus (SIV) isolates were also used for these studies. The restricted use of the CCR5 chemokine receptor for viral entry was associated with infection by a virus having a non-syncytium-inducing phenotype and correlated with a reduced rate of disease progression and a prolonged disease-free interval. Conversely, broadening chemokine receptor usage from CCR5 to both CCR5 and CXCR4 was associated with infection by a virus having a syncytium-inducing phenotype and correlated with a faster rate of CD4 T-cell decline and progression of disease. We also observed a greater tendency for infection with a virus having a syncytium-inducing phenotype in men heterozygous for the defective CCR5 Delta32 allele (25%) than in those men homozygous for the wild-type CCR5 allele (6%) (P = 0.03). The propensity for infection with a virus having a syncytium-inducing phenotype provides a partial explanation for the rapid disease progression among some men heterozygous for the defective CCR5 Delta32 allele. Furthermore, we did not identify any primary viruses that used CCR3 as an entry cofactor, despite this CC chemokine receptor being expressed on the cell surface at a level commensurate with or higher than that observed for primary peripheral blood mononuclear cells. Whereas isolates of primary viruses of SIV also used STRL33/BONZO/TYMSTR and GPR15/BOB, no primary isolates of HIV-1 used these particular chemokine receptor-like orphan molecules as entry cofactors, suggesting a limited contribution of these other chemokine receptors to viral evolution. Thus, despite the number of chemokine receptors implicated in viral entry, CCR5 and CXCR4 are likely to be the physiologically relevant chemokine receptors used as entry cofactors in vivo by diverse strains of primary viruses isolated from blood.  相似文献   

15.
Macrophage-derived chemokine (MDC) is a recently identified member of the CC chemokine family. MDC is not closely related to other chemokines, sharing most similarity with thymus- and activation-regulated chemokine (TARC), which contains 37% identical amino acids. Both chemokines are highly expressed in the thymus, with little expression seen in other tissues. In addition, the genes for MDC and TARC are encoded by human chromosome 16. To explore this relationship in greater detail, we have more precisely localized the MDC gene to chromosome 16q13, the same position reported for the TARC gene. We have also examined the interaction of MDC with CC chemokine receptor 4 (CCR4), recently shown to be a receptor for TARC. Using a fusion protein of MDC with secreted alkaline phosphatase, we observed high affinity binding of MDC-secreted alkaline phosphatase to CCR4-transfected L1.2 cells (Kd = 0.18 nM). MDC and TARC competed for binding to CCR4, while no binding competition was observed for six other chemokines (MCP-1, MCP-3, MCP-4, RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta). MDC was tested for calcium mobilization in L1.2 cells tranfected with seven different CC chemokine receptors. MDC induced a calcium flux in CCR4-transfected cells, but other receptors did not respond to MDC. TARC, which also induced calcium mobilization in CCR4 transfectants, was unable to desensitize the response to MDC. In contrast, MDC fully desensitized a subsequent response to TARC. Both MDC and TARC functioned as chemoattractants for CCR4 transfectants, confirming that MDC is also a functional ligand for CCR4. Since MDC and TARC are both expressed in the thymus, one role for these chemokines may be to attract CCR4-bearing thymocytes in the process of T cell education and differentiation.  相似文献   

16.
Several members of the chemokine receptor family have been shown to function in association with CD4 to permit human immunodeficiency virus type 1 (HIV-1) entry and infection. The CXC chemokine receptor CXCR4/fusin is a receptor for pre-B cell growth stimulating factor (PBSF)/stromal cell-derived factor 1 (SDF-1) and serves as a coreceptor for the entry of T cell line-tropic HIV-1 strains. Thus, the development of CXCR4 antagonists or agonists may be useful in the treatment of HIV-1 infection. T22 ([Tyr5,12,Lys7]-polyphemusin II) is a synthesized peptide that consists of 18 amino acid residues and an analogue of polyphemusin II isolated from the hemocyte debris of American horseshoe crabs (Limulus polyphemus). T22 was found to specifically inhibit the ability of T cell line-tropic HIV-1 to induce cell fusion and infect the cell lines transfected with CXCR4 and CD4 or peripheral blood mononuclear cells. In addition, T22 inhibited Ca2+ mobilization induced by pre-B cell growth stimulating factor (PBSF)/SDF-1 stimulation through CXCR4. Thus, T22 is a small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 entry into target cells.  相似文献   

17.
Thymocyte infection with HIV-1 is associated with thymic involution and impaired thymopoiesis, particularly in pediatric patients. To define mechanisms of thymocyte infection, we examined human thymocytes for expression and function of CXCR4 and CCR5, the major cell entry coreceptors for T cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) strains of HIV-1, respectively. CXCR4 was detected on the surface of all thymocytes. CXCR4 expression on mature, high level TCR thymocytes was similar to that on peripheral blood T cells, but was much lower than that on immature thymocytes, including CD34+ thymic progenitors. Consistent with this, stroma-derived factor-1 (SDF-1) induced calcium flux primarily in immature thymocytes, with CD34+ progenitors giving the strongest response. In addition, SDF-1 mRNA was detected in thymic-derived stromal cells, and SDF-1 induced chemotaxis of thymocytes, suggesting that CXCR4 may play a role in thymocyte migration. Infection of immature thymocytes by the T-tropic HIV-1 strain LAI was 10-fold more efficient than that in mature thymocytes, consistent with their relative CXCR4 surface expression. Anti-CXCR4 antiserum or SDF-1 blocked fusion of thymocytes with cells expressing the LAI envelope. In contrast to CXCR4, CCR5 was detected at low levels on thymocytes, and CCR5 agonists did not induce calcium flux or chemotaxis in thymocytes. However, CD4+ mature thymocytes were productively infected with the CCR5-tropic strain Ba-L, and this infection was specifically inhibited with the CCR5 agonist, macrophage inflammatory protein-1beta. Our data provide strong evidence that CXCR4 and CCR5 function as coreceptors for HIV-1 infection of human thymocytes.  相似文献   

18.
Signal transductions by the dual-function CXCR4 and CCR5 chemokine receptors/HIV type 1 (HIV-1) coreceptors were electrophysiologically monitored in Xenopus laevis oocytes that also coexpressed the viral receptor CD4 and a G protein-coupled inward-rectifying K+ channel (Kir 3.1). Large Kir 3.1-dependent currents generated in response to the corresponding chemokines (SDF-1alpha for CXCR4 and MIP-1alpha; MIP-1beta and RANTES for CCR5) were blocked by pertussis toxin, suggesting involvement of inhibitory guanine nucleotide-binding proteins. Prolonged exposures to chemokines caused substantial but incomplete desensitization of responses with time constants of 5-7 min and recovery time constants of 12-19 min. CXCR4 and CCR5 exhibited heterologous desensitization in this oocyte system, suggesting possible inhibition of a common downstream step in their signaling pathways. In contrast to chemokines, perfusion with monomeric or oligomeric preparations of the glycoprotein of Mr 120, 000 (gp120) derived from several isolates of HIV-1 did not activate signaling by CXCR4 or CCR5 regardless of CD4 coexpression. However, adsorption of the gp120 from a T-cell-tropic virus resulted in CD4-dependent antagonism of CXCR4 response to SDF-1alpha, whereas gp120 from macrophage-tropic viruses caused CD4-dependent antagonism of CCR5 response to MIP-1alpha. These antagonisms could be partially overcome by high concentrations of chemokines and were specific for coreceptors of the corresponding HIV-1 isolates, suggesting that they resulted from direct interactions of gp120-CD4 complexes with coreceptors and that they did not involve the desensitization pathway. These results indicate that monomeric or oligomeric gp120s specifically antagonize CXCR4 and CCR5 signaling in response to chemokines, but they do not exclude the possibility that gp120s might also function as weak agonists in some cells. The gp120-mediated disruption of CXCR4 and CCR5 signaling may contribute to AIDS pathogenesis.  相似文献   

19.
The effect of macrophage (M)-tropic and T cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) infection on antigen-specific CD4 cytotoxic T lymphocytes (CTLs) has been studied using a CD4 CTL line specific for a peptide from influenza B virus hemagglutinin. In the absence of antigen presentation, the production of CC chemokines was low. Both the M-tropic HIV-1 strain (HIV-1AD) and the T-tropic HIV-1 strain (HIV-1LAI) established productive infections in the CD4 CTLs, decreasing antigen-specific cytotoxicity. Peptide presented to the CD4 CTLs increased their secretion of RANTES and MIP-1beta, suppressed M-tropic HIV-1 replication, downmodulated CCR5 expression, and preserved CTL recognition. The suppression of M-tropic HIV-1 replication and downmodulation of the CCR5 receptor likely resulted from CC chemokine secretion since antibodies to CC chemokines restored M-tropic HIV-1 replication. Antigen presentation did not protect CD4 CTLs from T-tropic HIV-1 infection or preserve their CTL recognition. Thus, these CD4 CTLs do not make suppressor factors that inhibit the T-tropic HIV-1LAI isolate. The results indicate that these CD4 CTLs can either harbor or suppress M-tropic HIV-1 infection, depending on whether antigen is present. CD4 CTLs might therefore provide some protection in the early stages of HIV-1 infection when M-tropic isolates are present.  相似文献   

20.
We have shown that the binding of simian immunodeficiency virus (SIV) to Jurkat T cells expressing CD4 receptor strongly induces mitogen-activated protein (MAP) kinase kinase (MEK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) and only weakly induces p38 MAP kinase and c-Jun N-terminal kinase (JNK). Similarly, T-tropic NL4-3 virus, which uses both CD4 and CXCR4 receptors for entry, stimulated in these cells the MEK/ERK MAP kinase (MAPK) pathway in a CD4 receptor-dependent manner (Popik and Pitha, 1998). In contrast, both macrophage-tropic SIVmac316 and T cell-tropic SIVmac239, which in addition to CD4 require CCR5 coreceptor for entry, significantly enhanced early MEK/ERK, p38 MAPK, and JNK signaling in Jurkat cells expressing constitutively or transiently the CCR5 receptor. Together, this study provides the evidence that viruses using CXCR4 or CCR5 receptors for entry may differentially use signaling properties of their specific coreceptors to stimulate MAP kinase cascades. In addition, although SIVmac239 and SIVmac316 use different structural domains of the CCR5 receptor for entry, both viruses stimulate early phosphorylation of MEK, ERK, p38, and JNK independently of their tropism and replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号