首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have proposed a new architecture for building a scalable multicast ATM switch from a few tens to a few thousands of input/output ports. The switch, called the Abacus switch, employs input and output buffering schemes. Cell replication, cell routing, and output contention resolution are all performed in a distributed way so that the switch can be scaled up to a large size. The Abacus switch adopts a novel algorithm to resolve the contention of both multicast and unicast cells destined for the same output port (or output module). The switch can also handle multiple priority traffic by routing cells according to their priority levels. This paper describes a key ASIC chip for building the Abacus switch. The chip, called the ATM routing and concentration (ARC) chip, contains a two-dimensional array (3×32) of switch elements that are arranged in a cross-bar structure. It provides the flexibility of configuring the chip into different group sizes to accommodate different ATM switch sizes. The ARC chip has been designed and fabricated using 0.8-μm CMOS technology and tested to operate correctly at 240 MHz, Although the ARC chip was designed to handle the line rate at OC-3 (155 Mb/s), the Abacus switch can accommodate a much higher line rate at OC-12 (622 Mb/s) or OC-48 (2.5 Gb/s) by using a bit-sliced technique or distributing cells in a cyclic order to different inputs of the ARC chip. When the latter scheme is used, the cell sequence is retained at the output of the Abacus switch  相似文献   

2.
The author proposes a recursive modular architecture for a very large scale asynchronous transfer mode (ATM) switch. By extending the concept of the original knockout switch, the cell filtering and contention resolution functions are distributed over many small switch elements, which are arranged in a crossbar structure. The output ports of a switch fabric are partitioned into a number of groups by a novel grouping network to permit sharing of the routing paths in the same group. This partitioning and sharing concept is applied recursively to construct the entire switch elements. The technique of channel grouping for trunk circuits can be incorporated in the proposed ATM switch to improve the cell loss/delay performance while the cells' sequences are retained. A prototype circuit for the key switch element has been designed, and it has been shown that more than 4000 of the switch elements can be integrated into a VLSI chip with existing CMOS 1-μm technology  相似文献   

3.
When two or more packets that are destined to the same output of an ATM switch arrive at different inputs, buffers at inputs or outputs are used to queue all but one of these packets so that external conflict is prevented. Although input buffering ATM switches are more economical and simpler than output buffering ATM switches, significant loss of throughput can occur in input buffering ATM switches due to head‐of‐line (HOL) blocking when first‐in–first‐out (FIFO) queueing is employed. In order to avoid both external conflict and alleviate HOL blocking in non‐blocking ATM switches, some window‐based contention resolution algorithms were proposed in the literature. In this paper, we propose a window‐based contention resolution algorithm for a blocking ATM switch based on reverse baseline network with content addressable FIFO (CAFIFO) input buffers. The proposed algorithm prevents not only external conflicts but also internal conflicts, in addition to alleviating HOL blocking. This algorithm was obtained by adapting the ring reservation algorithm used on non‐blocking ATM switches to a reverse baseline network. The fact that a non‐blocking network is replaced by a log2 N‐stage reverse baseline network yields a significant economy in implementation. We have conducted extensive simulations to evaluate the performance of reverse baseline network using the proposed window‐based contention resolution algorithm. Simulation results show that the throughput of reverse baseline network can be as good as the throughput of non‐blocking switches if the window depth of input buffers is made sufficiently large. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Multistage interconnection networks (MINs) have long been studied for use in switching networks. Since they have a unique path between source and destination and the intermediate nodes of the paths are shared, internal blocking can cause very poor throughput. This paper proposes a high throughput ATM switch consisting of an Omega network with a new form of input queues called bypass queues. We also improve the switch throughput by partitioning the Input buffers into disjoint buffer sets and multiplexing several sets of nonblocking cells within a time slot, assuming that the routing switch operates only a couple of times faster than the transmission rate. A neural network model is presented as a controller for cell scheduling and multiplexing in the switch. Our simulation results under uniform traffic show that the proposed approach achieves almost 100% of potential switch throughput  相似文献   

5.
Ghosh  D. Daly  J.C. 《Electronics letters》1992,28(10):902-903
A selfrouting crossbar switch with multiple channels per input and output ports has been designed in 2 mu m CMOS. It has a pipelined architecture which permits high speed path setup and arbitration. This crossbar is the building block for an asynchronous transfer mode (ATM) switch fabric using multiple channel delta networks with shared output buffers.<>  相似文献   

6.
A general expansion architecture is proposed that can be used in building large-scale switches using any type of asynchronous transfer mode (ATM) switch. The proposed universal multistage interconnection network (UniMIN) switch is composed of a buffered distribution network (DN) and a column of output switch modules (OSMs), which can be any type of ATM switch. ATM cells are routed to their destination using a two-level routing strategy. The DN provides each incoming cell with a self-routing path to the destined OSM, which is the switch module containing the destination output port. Further routing to the destined output port is performed by the destination OSM. Use of the channel grouping technique yields excellent delay/throughput performance in the DN, and the virtual FIFO concept is used for implementing the output buffers of the distribution module without internal speedup. We also propose a “fair virtual FIFO” to provide fairness between input links while preserving cell sequence. The distribution network is composed of one kind of distribution module which has the same size as the OSM, regardless of the overall switch size N. This gives good modular scalability in the UniMIN switch. Performance analysis for uniform traffic and hot-spot traffic shows that a negligible delay and cell loss ratio in the DN can be achieved with a small buffer size, and that DN yields robust performance even with hot-spot traffic. In addition, a fairness property of the proposed fair virtual FIFO is shown by a simulation study  相似文献   

7.
The asynchronous transfer mode (ATM) is the choice of transport mode for broadband integrated service digital networks (B-ISDNs). We propose a window-based contention resolution algorithm to achieve higher throughput for nonblocking switches in ATM environments. In a nonblocking switch with input queues, significant loss of throughput can occur due to head-of-line (HOL) blocking when first-in first-out (FIFO) queueing is employed. To resolve this problem, we employ bypass queueing and present a cell scheduling algorithm which maximizes the switch throughput. We also employ a queue length based priority scheme to reduce the cell delay variations and cell loss probabilities. With the employed priority scheme, the variance of cell delay is also significantly reduced under nonuniform traffic, resulting in lower cell loss rates (CLRs) at a given buffer size. As the cell scheduling controller, we propose a neural network (NN) model which uses a high degree of parallelism. Due to higher switch throughput achieved with our cell scheduling, the cell loss probabilities and the buffer sizes necessary to guarantee a given CLR become smaller than those of other approaches based on sequential input window scheduling or output queueing  相似文献   

8.
A new ATM switch architecture is presented. Our proposed Multinet switch is a self-routing multistage switch with partially shared internal buffers capable of achieving 100% throughput under uniform traffic. Although it provides incoming ATM cells with multiple paths, the cell sequence is maintained throughout the switch fabric thus eliminating the out-of-order cell sequence problem. Cells contending for the same output addresses are buffered internally according to a partially shared queueing discipline. In a partially shared queueing scheme, buffers are partially shared to accommodate bursty traffic and to limit the performance degradation that may occur in a completely shared system where a small number of calls may hog the entire buffer space unfairly. Although the hardware complexity in terms of number of crosspoints is similar to that of input queueing switches, the Multinet switch has throughput and delay performance similar to output queueing switches  相似文献   

9.
Ultrafast photonic ATM switch with optical output buffers   总被引:1,自引:0,他引:1  
An ultrafast photonic asynchronous transfer mode (ATM) (ULPHA) switch based on a time-division broadcast-and-select network with optical output buffers is presented. The ULPHA switch has an ultra-high throughput and excellent traffic characteristics, since it utilizes ultrashort optical pulses for cell signals and avoids cell contentions by novel optical output buffers. Feasibility studies show that an 80×80 ULPHA switch with 1-Gb/s input/output is possible by applying the present technology, and that more than 1 Tb/s is possible by making a three-stage network using such switches. As an experimental demonstration, 4-bit 40-Gb/s optical cells were generated and certain cells were selected at an output on a self-routing basis. With its high throughput and excellent traffic considerations, the ULPHA switch is a strong candidate for a future large-capacity optical switching node  相似文献   

10.
A high-performance self-routing switch is proposed for ATM (asynchronous transfer mode) switch systems. Switching performance is enhanced by a rerouting algorithm applied to a particular multistage interconnection algorithm. The interconnection algorithm offers many access points to the output and resolves output contention by layering buffers at each switching stage. The author analyzes switching performance and shows that this switch can be easily engineered to have high throughput and low cell loss probability by increasing the number of switching stages. The author also illustrates that the number of switching stages required for a given cell loss probability shows gradual growth with increasing switch size. Analysis shows that the proposed switch is robust even with respect to nonuniform traffic  相似文献   

11.
We propose an innovative agile crossbar switch architecture called contention‐tolerant crossbar, denoted by CTC(N). Unlike the conventional crossbar and the crossbar with crosspoint buffers, which require complex hardware resolvers to grant one out of multiple output requests, CTC(N) can tolerate output contentions by a pipelining mechanism, with pipeline stages implemented as buffers in input ports. These buffers are used to decouple the scheduling task into N independent parts in such a way that N schedulers are located in N input ports, and they operate independently and in parallel. Without using arbiters and/or crosspoint buffers that require additional chip area, the CTC(N) switch is more scalable than existing crossbars. We analyze the throughput of CTC(N) switch, and find 63% throughput bottleneck. For achieving 100%, we consider two approaches: using internal speedup and using space multiplexing without internal speedup. We prove that 100% throughput can be achieved with internal speedup 2 or using two layers of CTC(N) fabric mathematically. Our simulation results validate our theoretical analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
输入/输出ATM交换机在突发性业务下的性能   总被引:1,自引:0,他引:1  
本文详尽分析了内部无阻塞输入/输出排队反压型ATM交换机在突发性业务下信元丢失、交换机最大吞吐量等性能。输入端口信元的到达过程是ON-OFF突发流,且ON态以概率p发送信元,ON-OFF长度为Pareto分布的随机变量;属于同一突发流的信元输往同一个输出端口,不同突发流的信元等概率输往不同的输出端口;输入/输出缓冲器长度有限,交换机加速因子S任意。本文同时比较了突发长度为周期/几何分布下的交换机性能,其结论对实际设计一输入/输出排队反压型ATM交换机具有一定参考意义。  相似文献   

13.
Asynchronous transfer mode (ATM) is the transport technique for the broadband ISDN recommended by CCITT (I.121). Many switches have been proposed to accommodate the ATM that requires fast packet switching capability.1-8 The proposed switches for the broadband ISDN can be classified as being of input queueing or output queueing type. Those of the input queueing type have a throughput performance which is approximately 58 per cent that of the output queueing type. However, output queueing networks require larger amounts of hardware than input queueing networks. In this paper, we propose a new multistage switch with internal buffering that approaches a maximum throughput of 100 per cent as the buffering is increased. The switch is capable of broadcasting and self-routeing. It consists of two switching planes which consist of packet processors, 2 x 2 switching elements, distributors and buffers located between stages and in the output ports. The internal data rate of the proposed switch is the same as that of the arriving information stream. In this sense, the switch does not require speed-up. The switch has log2 N stages that forward packets in a store-and-forward fashion, thus incurring a latency of log2 N time periods. Performance analysis shows that the additional delay is small.  相似文献   

14.
A viable ATM switch architecture exploiting both input and output queueing on a space division switch is proposed. This architecture features both input and output ports that are divided into several groups, and an efficient contention resolution algorithm is developed. The performance study indicates that a group size of eight is sufficient to achieve 90% efficiency.<>  相似文献   

15.
A switch architecture for ATM is described which uses a simple priority module to resolve input contention and a distributed design to permit transfer of input cells to the first free output buffer. The switch has been synthesised using VHDL software and a target generic library and can operate at speeds >400 Mbit/s  相似文献   

16.
We describe the development and analysis of an asynchronous transfer mode (ATM) switch architecture based on input–output buffers, a sort-Banyan network and a feedback acknowledgement (ACK) signal to be sent to the input unit. This is an input-buffer and output-buffer type of switch but with the different approach of feedback, which uses an acknowledgement feedback filter for recycling cells that lose contention at the routing network. In contrast to another design1 which uses a merge network, a path allocation network and a concentration network at the output of the sort network to generate the acknowledgement signal, in this new proposal, the filler network has been simplified using only N filter nodes (2 × 2 switch element) and multiplexers which are placed at the feedforward of the sort network. This switch provides non-blocking, low cell loss and high throughput properties. It is designed with internal speed-up to enhance its throughput, to reduce the head of line (HOL) blocking, and to reduce the end-to-end delay.  相似文献   

17.
This letter proposes a high-speed input and output buffering asynchronous transfer mode (ATM) switch, named the tandem-crosspoint (TDXP) switch, The TDXP switch consists of multiple crossbar switch planes, which are connected in tandem at every crosspoint. The TDXP switch does not increase the internal line speed in eliminating head-of-line (HOL) blocking. In addition, since the TDXP switch employs a simple cell reading algorithm at the input buffer in order to retain the cell sequence, the TDXP switch does not require the cell sequences to be rebuilt at output buffers using time stamps, as is required by a parallel switch. It is shown that the TDXP switch can eliminate the HOL blocking effectively and achieve high throughput  相似文献   

18.
A self-routing 2*2 photonic packet switch with two fibre-loop input buffers that provide output contention resolution is demonstrated. The switch uses high-speed electronic control that prioritises all switching and buffer operations and guarantees packet integrity while maximising throughput.<>  相似文献   

19.
The shared-buffering architecture is promising to make a large-scale ATM switch with small buffer size. However, there are two important problems, namely, memory-access speed and complex-control implementation. Advanced 0.5 μm CMOS technology now makes it possible to integrate a huge amount of memory, and enables us to apply more sophisticated architecture than ever before. We propose the funnel-structured expandable architecture with shared multibuffering and the advanced searchable-address queueing scheme for these two problems. The funnel structure gives a flexible capability to build various sizes of ATM switches which are proportional to the number of LSI chips. The searchable-address queue, in which all the addresses of the stored cells for different output ports are queued in a single-FIFO hardware and the earliest address is found by the search function provided inside the queue, can reduce the total memory capacity drastically, and enables the address queue to be contained inside the LSI chip. This technique also has a great advantage for implementing the multicast and multilevel priority-control functions. A 622 Mbit/s 32×8 ATM switch LSI chip set, which consists of a BX-LSI and a CX-LSI, is developed using 0.5 μm pure CMOS technology. By using four chip sets, a 622 Mbit/s 32×32 switch can be installed on one board  相似文献   

20.
An analytical model for the performance analysis of a multiple input queued asynchronous transfer mode (ATM) switch is presented. The interconnection network of the ATM switch is internally nonblocking and each input port maintains a separate queue of cells for each output port. The switch uses parallel iterative matching (PIM) to find the maximal matching between the input and output ports of the switch. A closed-form solution for the maximum throughput of the switch under saturated conditions is derived. It is found that the maximum throughput of the switch exceeds 99% with just four iterations of the PIM algorithm. Using the tagged input queue approach, an analytical model for evaluating the switch performance under an independent identically distributed Bernoulli traffic with the cell destinations uniformly distributed over all output ports is developed. The switch throughput, mean cell delay, and cell loss probability are computed from the analytical model. The accuracy of the analytical model is verified using simulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号