共查询到20条相似文献,搜索用时 15 毫秒
1.
Multizone airflow network models assume that in a zone air temperature and contaminant concentrations are uniform, and air momentum effects are neglected. These assumptions could cause errors for airflow with strong buoyancy, large contaminant concentration gradient, or strong momentum. This study has found the correlations of the errors and some dimensionless air parameters. The assumption of uniform air temperature is acceptable when the dimensionless temperature gradient is smaller than 0.03. The assumption of uniform contaminant concentration is valid if the corresponding Archimedes number for the source zone is greater than 400. The assumption of neglecting air momentum effect is reasonable when the jet momentum effect is dissipated before reaching an opening in downstream. 相似文献
2.
Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. 相似文献
3.
Hygroscopic materials available in the interior of buildings such as wood, gypsum, paper etc, are able to absorb moisture if the relative humidity of the room increases and release it again if the relative humidity decreases. This moisture buffering phenomenon is often accounted for in a simplified way in Building Energy Simulation programs (BES) e.g. TRNSYS, which limits their applicability. Nevertheless several building applications require an accurate prediction of the indoor relative humidity already from the design stage. 相似文献
4.
The coupling strategies for natural ventilation between building simulation (BS) and computational fluid dynamics (CFD) are discussed and coupling methodology for natural ventilation is highlighted. Two single-zone cases have been used to validate coupled simulations with full CFD simulations. The main discrepancy factors have also been analyzed. The comparison results suggest that for coupled simulations taking pressure from BS as inlet boundary conditions can provide more accurate results for indoor CFD simulation than taking velocity from BS as boundary conditions. The validation results indicate that coupled simulations can improve indoor thermal environment prediction for natural ventilation taking wind as the major force. With the aids of developed coupling program, coupled simulations between BS and CFD can effectively improve the speed and accuracy in predicting indoor thermal environment for natural ventilation studies. 相似文献
6.
Indoor climates have a three-dimensional spatial distribution caused by three-dimensional airflow. To understand the building performance, we must integrate these spatial distributions into building simulations. However, conventional energy simulations are based on the assumptions that perfect mixing of air streams with different temperatures occurs. Therefore, it has been difficult to evaluate the effectiveness of energy conservation methods that utilize a thermal distribution mechanism within a room. Taking into account the above conditions, we have developed a calculation method that can achieve more accurate time-series analysis. This is accomplished by combining the newly developed method with the conventional energy simulation method. In the new method, we calculate, in advance, the heat response in a static flow field using computational fluid dynamics (CFD) analysis. Then we calculate Advection-Diffusion Response Factors and integrate them into the energy simulation as a factor in the three-dimensional thermal distribution within a room. In this paper, we show a calculation example using the model for high ceilings with high-temperature exhaust. As a result, we conclude that our new calculation method, in combination with a dynamic heat load calculation, will offer possibilities for a long-term, non-steady-state energy simulation, even on personal computers, based on the room temperature distribution data obtained using steady-state calculations with CFD analysis. 相似文献
7.
从计算流体力学CFD应用于暖通空调工程的角度,阐述了通风空调房间内气流组织数值计算的特殊性和难点,对风口模型、湍流模型、辐射模型、热源模型、计算收敛速度以及复杂物理条件的描述等作了分析和介绍,并提出了相应的对策或解决思路。 相似文献
8.
The transformation of urban and building design into green development is conducive to alleviating resource and environmental problems. Building design largely determines pollutant emissions and energy consumption throughout the building life cycle. Full consideration of the impact of urban geometries on the microclimate will help construct livable and healthy cities. Computational fluid dynamics (CFD) simulations significantly improve the efficiency of assessing the microclimate and the performance of design schemes. The integration of CFD into design platforms by plug-ins marks a landmark development for the interaction of computer-aided design (CAD) and CFD, allowing architects to perform CFD simulations in their familiar design environments. This review provides a systematic overview of the classification and comprehensive comparison of CFD plug-ins in Autodesk Revit, Rhinoceros/Grasshopper, and SketchUp. The applications of CFD plug-ins in urban and building design are reviewed according to three types: single-objective, multi-objective, and coupling simulations. Two primary roles of CFD plug-ins integrated into the design process, including providing various micro-scale numerical simulations and optimizing the original design via feedback results, are analyzed. The issues of mesh generation, boundary conditions, turbulence models, and simulation accuracy during CFD plug-in applications are discussed. Finally, the limitations and future possibilities of CFD plug-ins are proposed. 相似文献
9.
Currently, most local authorities in the UK use well-established Gaussian-type dispersion models to predict the air quality in urban areas. The use of computational fluid dynamics (CFD) in integrated urban air quality modelling is still in its infancy, despite having an enormous potential in assessing and improving natural ventilation in built-up areas. This study assesses the suitability of a general CFD code (PHOENICS) for use in integrated urban air quality modelling for regulatory purposes. An urban air quality model of a designated air quality management area in the city centre of Glasgow has been developed by integrating traffic flow data for urban road networks, traffic pollutant emission data and a three-dimensional CFD dispersion model of a complex configuration of street canyons. The results are in good agreement with field measurements taken during the continuous monitoring campaign, and show that a general CFD code has indeed the potential for regulatory use. Although this numerical tool has demonstrated satisfactory performance, it is observed that small differences in monitoring station positioning may yield significant variations of the measured mean concentration, due to large values of horizontal and vertical local concentration gradients. Although, at this stage, the accuracy of the developed Glasgow urban air quality model is highly dependent on the experience of its users, it is believed that use of a CFD code (such as PHOENICS) could benefit urban planners, architects, HVAC engineers and all other professionals interested in public health. 相似文献
10.
The goal of the air distribution inside a hospital operating room (OR) is to protect the patient and staff from cross-infection while maintaining occupant comfort and not affecting the facilitation of surgical tasks. In ORs, HEPA-filtered air and vertical (downward) laminar airflow are often used to achieve a unidirectional flow of fresh air from ceiling, washing over the patient and flowing out of exhaust vents on the side walls, near the floor. However, previous research has shown that this method does not necessarily achieve the desired unidirectional flow pattern or adequately achieve optimal air asepsis. The results from this study show that maximizing the area of the laminar flow diffusers remedies this issue and provides very low contamination levels. The use of air curtains as specified by manufacturers of commercial products may not provide satisfactory results, with noticeable contamination levels at the wound site. 相似文献
11.
High-resolution 3D steady RANS CFD simulations of forced convective heat transfer at the facades of a low-rise cubic (10 × 10 × 10 m 3) building are performed to determine convective heat transfer coefficients (CHTC). The focus is on the windward facade. CFD validation is performed based on wind tunnel measurements of velocity and heat transfer for reduced-scale cubic models. The CFD simulations employ a high-resolution grid with, for the 10 m cubic building, cell centres at a minimum distance of 160 μm from the building surface to resolve the entire boundary layer, including the viscous sublayer and the buffer layer, which dominate the convective surface resistance. The results show that: (1) the wind flow around the building results in highly varying CHTC values across the windward facade; (2) standard and non-equilibrium wall functions are not suitable for CHTC calculation, necessitating either low-Reynolds number modelling or specially-adapted wall functions; (3) at every facade position, the CHTC is a power-law function of the mean wind speed; (4) the CHTC distribution at the windward facade is relatively insensitive to wind direction variations in the 0–67.5° angle range; (5) the CHTC shows a stronger spatial correlation with the turbulent kinetic energy than with the mean wind speed across the facade; and (6) the CHTC distribution across the windward facade is quite similar to the distribution of wind-driven rain (WDR), with both parameters reaching high levels near the top edge of the facade. This suggests that also the convective moisture transfer coefficient will be higher at this location and that the facade parts that receive most WDR might also experience a higher drying rate. 相似文献
12.
This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k- ? model, (2) the RNG k- ? model, (3) the realizable k- ? model, (4) the standard k- ω model, (5) the SST k- ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k- ? and the standard k- ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation. 相似文献
13.
For decades, the assessment of the amount and intensity of wind-driven rain (WDR) falling onto building facades has been performed either by measurements or by semi-empirical methods such as the WDR index and the WDR relationship. In the past 15 years, numerical assessment methods based on Computational Fluid Dynamics (CFD) have secured their place in WDR research. Despite the widespread use of these methods at present, very few efforts have been made towards validation of CFD simulations of WDR on buildings. This paper presents a detailed validation study for a low-rise building of complex geometry, supported by a recently published, high-resolution full-scale wind, rain and WDR measurement dataset. It is shown that the CFD simulations can provide quite accurate predictions of the amount of WDR impinging on the building facade, for a number of very different rain events, and that the main discrepancies, in this study, are due to a simplification of the upstream wind conditions. 相似文献
14.
The envelope of a building is mainly responsible for its energy demand. Different kinds of double skin facades (DSFs) are nowadays used as a building envelope to reduce the energy demand and improve aesthetical view of buildings. Although DSF are already extensively used, their thermal performance is not well understood. This study presents a decoupling method capable to evaluate thermal performances and analyze fluid phenomena in a DSF. The solar radiation effects were evaluated with an analytical model and computational fluid dynamics (CFD) simulations were used to evaluate complex flow and thermal effect on a commercial DSF. With the decoupling approach to account for the effects of solar radiation and flow, the numerical results obtained by the CFD approach agree well with the experimental data collected on a full scale test room with a ventilated DSF. The method can be used to establish a database to develop a tool for DSF design. 相似文献
15.
An experimentally validated computational fluid dynamics (CFD) model of a novel building integrated photovoltaic-thermal (BIPV/T) collector is studied to determine the effect of active heat recovery on cell efficiency and to determine the effectiveness of the device as a solar hot water heater. Parametric analysis indicates that cell efficiency can be raised by 5.3% and that water temperatures suitable for domestic hot water use are possible. Thermal and combined (thermal plus electrical) efficiencies reach 19% and 34.9%, respectively. A new correlation is developed relating electrical efficiency to collector inlet water temperature, ambient air temperature and insolation that allows cell efficiency to be calculated directly. 相似文献
16.
Based on the Response Surface Methodology (RSM), the development of first- and second-order models for predicting the Air Diffusion Performance Index (ADPI) in a displacement-ventilated office is presented. By adopting the technique of Computational Fluid Dynamics (CFD), the new ADPI models developed are used to investigate the effect of simultaneous variation of three design variables in a displacement ventilation case, i.e. location of the displacement diffuser ( Ldd), supply temperature ( T) and exhaust position ( Lex) on the comfort parameter ADPI. The RSM analyses are carried out with the aid of a statistical software package MINITAB. In the current study, the separate effect of individual design variable as well as the second-order interactions between these variables, are investigated. Based on the variance analyses of both the first- and second-order RSM models, the most influential design variable is the supply temperature. In addition, it is found that the interactions of supply temperature with other design variables are insignificant, as deduced from the second-order RSM model. The optimised ADPI value is subsequently obtained from the model equations. 相似文献
17.
A new method for compensating the space discretization error introduced when the fixed flow field is considered for the dynamic models of temperature distribution is presented. It is proved that the method generally used in literature is a particular solution of the proposed one. Moreover, it results in a continuous-time model, for which the integrating method becomes a free choice and a state-space representation is possible. The numerical model was experimentally validated, the comparison, both in the time and in the frequency domains, between simulation and measured results showing good agreement. The presented dynamic model increases the calculation speed and it can be analysed with the tools developed in control theory. 相似文献
19.
A numerical simulation approach for evaluation of wind-driven rain (WDR) on building envelopes is presented based on Eulerian multiphase model. Unlike existing methods, which are generally on the basis of Lagrange frame to deal with raindrop motions by trajectory-tracking techniques, the present approach considers both wind and rain motions and their interactions under Euler frame. By virtue of the Eulerian multiphase model, the present method could significantly reduce the complexity in evaluations of WDR parameters, simplify the boundary condition treatments and is more efficient to predict transient states of WDR, spatial distributions of rain intensity, impacting rain loads on building surfaces, etc. A numerical example shows that the simulation results by the present method agree well with available experimental and numerical data, verifying the accuracy and reliability of the WDR simulation approach based on the Eulerian multiphase model. It is also demonstrated through the validation example that the present method is an effective tool for numerical evaluations of WDR on building envelopes. 相似文献
20.
This article aims to draw the attention of the scientific community towards the elevated risks of airborne transmission of diseases and the associated risks of epidemics or pandemics. The complexity of the problem and the need for multidisciplinary research is highlighted. The airborne route of transmission, i.e. the generation of pathogen laden droplets originating in the respiratory tract of an infected individual, the survivability of the pathogens, their dispersal indoors and their transfer to a healthy person are reviewed. The advantages and the drawbacks of air dilution, filtration, ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation (PCO), plasmacluster ions and other technologies for air disinfection and purification from pathogens are analyzed with respect to currently used air distribution principles. The importance of indoor air characteristics, such as temperature, relative humidity and velocity for the efficiency of each method is analyzed, taking into consideration the nature of the pathogens themselves. The applicability of the cleaning methods to the different types of total volume air distribution used at present indoors, i.e. mixing, displacement and underfloor ventilation, as well as advanced air distribution techniques (such as personalized ventilation) is discussed. 相似文献
|