首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于互联网技术急速发展及其用户迅速地增加,很多网络服务公司每天不得不处理TB级甚至更大规模的数据量。在如今的大数据时代,如何挖掘有用的信息正变成一个重要的问题。关于数据挖掘(Data Mining)的算法在很多领域中已经被广泛运用,挖掘频繁项集是数据挖掘中最常见且最主要的应用之一,Apriori则是从一个大的数据集中挖掘出频繁项集的最为典型的算法。然而,当数据集比较大或使用单一主机时,内存将会被快速消耗,计算时间也将急剧增加,使得算法性能较低,基于MapReduce的分布式和并行计算则被提出。文中提出了一种改进的MMRA (Matrix MapReduce Algorithm)算法,它通过将分块数据转换成矩阵来挖掘所有的频繁k项集;然后将提出的算法和目前已经存在的两种算法(one-phase算法、k-phase算法)进行比较。采用Hadoop-MapReduce作为实验平台,并行和分布式计算为处理大数据集提供了一个潜在的解决方案。实验结果表明,改进算法的性能优于其他两种算法。  相似文献   

2.
3.
现有FP-growth频繁集挖掘算法在处理大数据时存在时空效率不高的问题,且内存的使用随着数据的增加已经无法满足把待挖掘数据压缩存储在单个内存中,为此,提出一种基于MapReduce模型的频繁项集并行挖掘算法。该算法采用一种基于key/value键值对直接扫描value寻找条件模式基的方式,同时通过在原有FP-tree树节点中新增一个带频繁项前缀的域空间来构建一颗新的条件模式树NFP-tree,使得对一项频繁项的条件模式基进行一次建树一次遍历就可以得到相应的频繁项集。对所提出的算法在Hadoop平台进行了验证与分析,实验结果表明该算法效率较传统FP-growth算法平均提高16.6%。  相似文献   

4.
针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD).该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNod-eset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间.实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果.  相似文献   

5.
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI—Miner(The Miner Basedon Depth—First Searching for Mining Maximal Frequent Itemsets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。  相似文献   

6.
一种基于单事务项集组合的频繁项集挖掘算法   总被引:2,自引:0,他引:2  
曾波 《计算机科学》2008,35(1):196-197
Apriori是挖掘频繁项集的基本算法,目前该算法及其优化变种都没有解决候选项及重复扫描事务数据库的问题.文章通过对Apriori及其优化算法的深入探究,提出了一种基于单事务组合项集的挖掘算法,该算法在一个事务内部对"数据项"进行组合,在事务数据库中对所有相同"项集"进行计数.不经过迭代过程,不产生候选项集,所有频繁项集的挖掘过程只需对事务数据库一次扫描,提高了频繁项集挖掘效率.  相似文献   

7.
8.
一种基于关系数据库的频繁项集挖掘算法   总被引:3,自引:0,他引:3  
王治和 《计算机科学》2006,33(9):159-160
频繁项集的挖掘是数据挖掘中的一个十分重要的组成部分,目前对于事务数据库频繁项集的挖掘算法研究较多。本文根据事务数据库中布尔型频繁项集挖掘的理论和方法,再结合关系数据库的特殊性,利用标准SQL语言提出了一种新的在关系数据库中挖掘频繁项集的简易算法。实验证明该算法具有较高的效率。  相似文献   

9.
传统的数据挖掘算法在面向大规模高维数据的挖掘过程中,存在数据特征捕捉准确率低、节点负载不均衡、数据交互频繁、频繁项集紧凑化程度低等问题。提出基于MapReduce的并行挖掘算法PARDG-MR,结合高维数据特征,设计基于维度粒化算法和负载均衡算法的DGPL策略,并对数据进行预处理,以解决高维复杂数据特征属性捕捉困难及数据划分中节点负载不均衡的问题。通过构建基于PJPFP-Tree树的频繁项集并行挖掘策略PARM,实现频繁项集的并行化分组过程,从而提高数据处理的运行效率。在此基础上,提出基于剪枝前缀推论的整合节点剪枝算法PJPFP,提高频繁项集挖掘过程中的剪枝效率,增强频繁项集的紧凑化程度。在Webdocs、NDC、Gisette 3个数据集上的实验结果表明,相比PFP-growth、PWARM、MRPrePost算法,该算法的运行时间平均缩短了约20%,能够有效提高数据挖掘效率且降低内存空间。  相似文献   

10.
频繁闭项集的挖掘是发现数据项之间关联规则的一种有效方式。当前以MapReduce模式为基础的云计算平台为解决海量数据中的关联规则挖掘问题提供新的解决思路。文中提出并实现一种基于Hadoop云计算平台的频繁闭项集的并行挖掘算法。该算法主要包括并行计数、构造全局频繁项表、并行挖掘局部频繁闭项集和并行筛选全局频繁闭项集四个步骤。在多个数据集上的实验表明,该方法能较大提高数据挖掘的效率,具有较好的加速比。  相似文献   

11.
一种基于矩阵的动态频繁项集挖掘算法   总被引:4,自引:0,他引:4  
频繁项集的生成是关联规则挖掘中的关键问题,提出了一种基于上三角项集矩阵的动态频繁项集挖掘算法。当事务数据库和最小支持度发生变化时,本算法只需重新遍历一次上三角项集矩阵,即可得到新的频繁项集。与传统的频繁项集挖掘算法相比,在执行效率上有显著提高。  相似文献   

12.
分析实际应用中有效访问序列的特点,提出了一种采用自底向上策略快速挖掘最大频繁项集的OUS算法。该算法首先对用户项集进行重叠操作统计浏览次数,然后合并,依据用户给出的最小支持度删除原项集中的非频繁页面元素,并对两两用户项集筛选生成候选频繁项集,最后扫描数据库,统计各个候选频繁项集的支持度计数。实验结果表明,该算法能有效地发现用户最大频繁项集。  相似文献   

13.
一种基于矩阵的频繁项集更新算法*   总被引:2,自引:0,他引:2  
针对相关算法在处理频繁项集更新时所存在的问题,提出了一种基于矩阵的频繁项集更新算法。该算法首先以时间为基准将更新后的数据库分为原数据库和新增数据库,分别将它们转换为0-1矩阵,通过矩阵裁剪、位运算产生新增频繁项集,并利用已有频繁项集更新原有频繁项集。实验仿真结果不但证明了该算法的可行性和高效性,而且还证明了它适合大型、稠密性数据库的频繁项集更新。  相似文献   

14.
本文提出一种基于ESEquivPS(扩展支持度相等性剪枝策略)的封闭频繁项集挖掘算法ECFIMA。该算法采用深度优先和广度优先相结合的策略访问搜索空间,使用垂直位图向量格式存储表示项集和事务数据库,同时利用基本剪枝策略、相等性剪枝策略、扩展支持度相等性剪枝策略1和扩展支持度相等性剪枝策略2进行候选空间剪枝,并采用多种不同特性的测试数据集进行实验。实验结果表明,ECFIMA算法是一种高效的封闭频繁项集挖掘算法,在多种测试数据集上性能都优于CHARM算法,尤其是在拥有大量长的封闭频繁项集的测试数据集上,效率比CHARM算法提高约2~3倍。  相似文献   

15.
冯洁  陶宏才 《微计算机信息》2007,23(18):164-166
关联规则的发现是数据挖掘的一个重要方面,产生频繁项集是其中一个关键步骤。提出了一种基于十字链表快速挖掘频繁项集的算法,该算法只需扫描一次数据库,充分利用已有信息产生频繁项集,无需存储候选项集。通过与其它一些算法比较,说明该算法有更好的性能。  相似文献   

16.
如何在海量数据集中提高频繁项集的挖掘效率是目前研究的热点.随着数据量的不断增长,使用传统算法产生频繁项集的计算代价依然很高.为此,提出一种基于Spark的频繁项集快速挖掘算法(fast mining algorithm of frequent itemset based on spark,Fmafibs),利用位运算速度快的特点,设计了一种新颖的模式增长策略.该算法首先采用位串表达项集,利用位运算来快速生成候选项集;其次,针对超长位串计算效率低的问题,考虑将事务垂直分组处理,将同一事务不同组之间的频繁项集通过连接获得候选项集,最后进行聚合筛选得到最终频繁项集.算法在Spark环境下,以频繁项集挖掘领域基准数据集进行实验验证.实验结果表明所提方法在保证挖掘结果准确的同时,有效地提高了挖掘效率.  相似文献   

17.
针对频繁项集增量更新的问题,提出算法FIU。该算法将保存了数据库事务的FP-tree存储在磁盘上,当挖掘新支持度阈值的频繁项集时,只需从磁盘上读入FP-tree,再挖掘新支持度阈值下的频繁项集。当新增数据库事务记录后,首先建立新项目表,然后根据新项目表建立新增事务记录的FP-tree,读入存储在磁盘上的FP-tree,抽取出所有的事务记录,再插入到新FP-tree中.从而得到增量更新后的FP-tree。最后在增量更新后的FP-tree上挖掘频繁项集。实验证明,FIU算法执行时间不随数据库大小变化,与其他算法相比有较好的性能。  相似文献   

18.
一种动态的频繁项集挖掘算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于无向项集图的动态频繁项集挖掘算法。当事务数据库和最小支持度发生变化时,该算法只需重新遍历一次无向项集图,即可得到新的频繁项集。与传统的频繁项集挖掘算法相比,在执行效率上有显著提高。  相似文献   

19.
针对频繁项集挖掘时间与空间效率低的问题,提出一种基于前缀树的高效频繁项集挖掘算法,通过对事务集进行预处理,创建索引表并分配索引编号,保证前缀树中事务顺序的一致性,根据索引编号等信息创建紧凑的前缀树,采用自底向上的挖掘与投影的方式挖掘出频繁项集。实验结果表明,该算法挖掘效率高、占用空间少。  相似文献   

20.
系统地介绍了最大频繁项集的增量式更新问题,提出最大频繁项目集更新算法FUMFS,并举例说明了算法的执行过程。该算法充分利用已建立的BitMatrix和已挖掘的最大频繁项目集,对已挖掘的最大频繁项目集进行高效维护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号