首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

2.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

3.
用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ )的动力学。考察了特丁基肼浓度、酸度、NO-3 浓度、UO2 + 2 浓度、Fe3 + 浓度以及温度等对反应速率的影响。求出了反应动力学方程 :-dc(Np(VI) ) /dt =kc(Np(Ⅵ) )c0 .9(TBH) /c0 .75(H+ )。 2 5℃时的速率常数 :k=5 .4 4 (mol/L) -0 .15·min-1。反应的表观活化能 :Ea=6 1.2kJ/mol。在所研究的浓度范围内 ,NO-3 ,UO2 + 2 ,Fe3 + 对反应速率影响较小 ;而升高温度能显著提高反应速率  相似文献   

4.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

5.
在硝酸介质中,利用分光光度法研究了亚硝酸与特丁基肼的氧化还原反应动力学。考察了特丁基肼浓度、酸度、离子强度、温度、UO22 离子浓度对反应速率的影响,实验得出的反应速率方程可表示为:-dc(HNO2)/dt=kc(HNO2)c(H )1.36c(TBH) 在25℃时,k=3.80×103(mol/L)-2.36·min-1,反应活化能为60.72kJ/mol。离子强度和UO22 离子浓度对反应速率基本上无影响。  相似文献   

6.
研究了氨基羟基脲(HSC)浓度、H~+浓度、NO_3~-浓度、Fe3+浓度、UO2+2浓度、反应温度对氨基羟基脲与Np(Ⅵ)还原反应速率的影响,获得了其动力学方程。实验结果表明:增加氨基羟基脲浓度和提高反应温度,降低H~+浓度和NO_3~-浓度,可以提高氨基羟基脲与Np(Ⅵ)还原速率;在UO2+2存在或Fe3+浓度小于1×10-3 mol/L时,对氨基羟基脲与Np(Ⅵ)的还原没有明显影响。氨基羟基脲还原Np(Ⅵ)的动力学方程式为:-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c2.52(HSC)c-0.53(H+)c-0.61(NO_3~-),在4.00℃时k=(1 037±60)(mol/L)-1.40·s-1,活化能Ea=(64.03±6.4)kJ/mol。  相似文献   

7.
肼为还原剂催化还原U(Ⅵ)制备U(Ⅳ)的工艺条件   总被引:3,自引:0,他引:3  
研究了硝酸体系中以铂黑为催化剂、肼为还原剂还原制备U(Ⅳ)的工艺条件,考察了硝酸浓度、肼浓度、反应温度、催化剂用量等对U(Ⅵ)转化率及副反应的影响。当铀浓度为0.90mol/L时,优化的工艺条件为:初始硝酸浓度0.80mol/L,初始肼浓度1.0mol/L左右,反应温度60℃,反应液25mL时催化剂铂黑用量为0.2g,反应3h后U(Ⅵ)的转化率大于99%。  相似文献   

8.
二甲基羟胺还原Np(Ⅵ)的反应动力学   总被引:2,自引:2,他引:0  
用分光光度法研究了HNO3介质中二甲基羟胺(DMHAN)还原Np(Ⅵ)的动力学。通过考察还原剂浓度和酸度等条件对Np(Ⅵ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),在温度θ=25℃、离子强度I=4.0 mol/kg时,速率常数k=289.8(mol/L)-0.4/min。研究了离子强度c、(U(Ⅵ))和温度等因素对反应的影响。结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响,25℃时反应活化能为53.3 kJ/mol;随着温度的升高,反应速率加快。并在此基础上推测了可能的反应机理。  相似文献   

9.
特丁基肼(TBH)是一种新型无盐还原剂,能有效还原Np(Ⅵ),而对Pu(Ⅳ)的还原则缓慢。在所有的肼类衍生物中,TBH对Np(Ⅵ)、Pu(Ⅳ)的还原速率差别最大,有望实现Np、Pu有效分离。 本工作利用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ)的动力学。研究了特丁基肼浓度、硝酸浓度、温度对还原速率的影响。实验结果表明,该反应的速率方程可表示为: -dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(TBH)0.9c(H )-0.75 25℃时,反应速率常数k=5.44(mol/L)-0.15·min-1,反应活化能为61.26kJ/mol。 探讨了离子强度、UO22 浓度、Fe3 浓度对还原速率的影响。结果表明:改变离子强度和  相似文献   

10.
研究了甲醛肟(FO)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.61(FO)c-0.88(H+),在18.7℃时,反应速率常数k=(110.39±7.70)(mol/L)-0.73/s,活化能为(68.82±3.00)kJ/mol。研究了甲醛肟浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度以及温度对甲醛肟与Pu(Ⅳ)还原反应速率的影响。结果表明:增加甲醛肟浓度、降低UO22+和H+浓度、增加Fe3+浓度以及升高温度,均使Pu(Ⅳ)还原速度增加;硝酸根浓度对甲醛肟还原Pu(Ⅳ)的速率基本无影响。  相似文献   

11.
研究了肼的初始浓度、硝酸浓度、催化剂的量(S/V)、温度、β放射性对Pt催化肼分解反应速率的影响,获得了其动力学方程。结果表明:增大肼的初始浓度、温度、催化剂的量和降低硝酸浓度,肼的分解速率加快;β放射性对Pt催化体系中肼的分解速率有显著的提高作用,其分解表观速率常数比单独Pt催化提高了19.3倍,比单独β辐解提高了1.35倍,β放射性辐照位置不同肼的分解速率也不同。Pt催化硝酸体系中肼分解的动力学速率方程为:-d c(N 2H+5)/d t=kc(N 2H^+5)c^-0.39(HNO 3),296 K时,速率常数k=(5.90±0.35)×10^-3mol/(L·min),活化能E a=(333.3±2.9)J/mol。  相似文献   

12.
纳米零价铁去除溶液中U(Ⅵ)的研究   总被引:4,自引:0,他引:4  
采用KBH4还原Fe3+制备纳米级零价铁,去除溶液中以铀酰离子形式(UO22+)存在的六价铀[U(Ⅵ)],考察纳米零价铁(NZVI)投加量、溶液pH值、U(Ⅵ)初始质量浓度以及时间等因素对铀去除效果的影响。实验结果表明:NZVI对U(Ⅵ)有很好的去除效果,当溶液pH=5.5、投加量为1.0 g/L、U(Ⅵ)初始质量浓度为45 mg/L、吸附时间为2.5 h时,对U(Ⅵ)的去除率为98.98%,吸附量为27.22 mg.g-1。  相似文献   

13.
利用分光光度法研究了高氯酸体系中羟胺乙酸(HAAA)与亚硝酸(HNO2)的还原动力学,其动力学方程式为-dc(HNO2)/dt=kc0.87(HAAA)c2.11(H+)c0.51(ClO-4),其中,在1℃时,反应速率常数k=(3.63±0.35)(mol/L)3.49/s,活化能Ea=(72.6±3.0)kJ/mol.同时还研究了羟胺乙酸浓度、H+浓度、高氯酸根浓度、温度对羟胺乙酸与亚硝酸反应速率的影响.结果表明,增加羟胺乙酸浓度、H+浓度、高氯酸根浓度和提高温度,HNO2还原速度加快.  相似文献   

14.
在振动搅拌槽中,研究了UO_2(NO_3)_2-HNO_3-N_2H_5NO_3(H_2O)/30%TBP(煤油)体系的水相电解液组分浓度对U(Ⅵ)电解还原速率的影响。根据实验数据,经回归分析得反应动力学微分方程: -(d[U(Ⅵ)]/dt)=k[U(Ⅵ)]~(0.77)[N_2H_5~+]~(0.061)[HNO_3]~0.017式中速度常数k是温度的函数。25℃时,k=0.0019。在实验浓度范围内,U(Ⅵ)还原速率随U(Ⅵ)浓度升高而增大,表现反应级数为0.75级,而[N_2H_5~+]及[HNO_3]影响很小,反应级数近于0。初步探讨了硝酸的电解还原以及硝酸肼对其还原过程的抑制作用,给出了不同硝酸浓度下的极化曲线。对于硝酸电解还原过程中主要产物亚硝酸的生成量与硝酸浓度、电解时间及肼浓度等的关系进行了讨论。  相似文献   

15.
采用分光光度法研究硝酸介质中单甲基肼(MMH)与亚硝酸(HNO2)的反应。HNO2和MMH反应动力学速率方程为-dc(HNO2)/dt=kc(H+)c1.1(NO-3)c1.1(MMH)c(HNO2)。当t=2.6℃、c(NO-3)=0.50mol/L时,反应速率常数k=(115±2)(mol/L)-3.2•s-1,反应活化能Ea=(37.8±0.1)kJ/mol。研究结果表明:在硝酸介质中,甲基肼与亚硝酸能快速反应;提高酸度、MMH浓度或硝酸根浓度均有利于亚硝酸的还原。  相似文献   

16.
通过分光光度法研究了硝酸体系中锝催化硝酸氧化U(Ⅳ)-肼的反应,结果表明:温度和锝浓度是影响锝催化硝酸氧化U(Ⅳ)速率的主要因素,Tc催化硝酸氧化U(Ⅳ)反应对Tc的级数为1.23,反应活化能Ea=79.2kJ/mol,Tc催化硝酸氧化U(Ⅳ)反应对U(Ⅳ)的级数为0,平均速率常数为1.60×10-4 min-1。肼浓度对锝催化氧化U(Ⅳ)的速率影响较小,Tc-U(Ⅳ)-肼体系中肼的氧化和U(Ⅳ)的氧化同时进行,但U(Ⅳ)早于肼氧化完,随后肼快速氧化完全,与Tc-肼体系相比,肼的氧化速率略有降低,U(Ⅳ)对肼的氧化既有促进作用,又有抑制作用。Tc-U(Ⅳ)-Pu(Ⅲ)-肼体系中,当锝浓度为0.005 mol/L,Pu(Ⅲ)稳定存在的时间小于45min。  相似文献   

17.
采用电动势法研究了硝酸体系中硝酸羟胺(HAN)还原Fe3+离子的反应动力学,得到了动力学表观速率方程-dc(Fe3+)/dt=kc0.62(HAN)c-2.80(H+)c(Fe3+)c-0.85(Fe2+);当温度为50℃、离子强度I=1.0mol/L时,表观速率常数k=(2.9±0.1)×10-6(mol/L)3.02/s,反应表观活化能Ea=(125±3)kJ/mol。硝酸根的存在对反应起到抑制作用,离子强度的增大对反应有促进作用。  相似文献   

18.
为了解羟胺乙酸(HAAA)对Pu(Ⅳ)的还原性能,用分光光度法研究了羟胺乙酸与Pu(Ⅳ)的还原动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.50(HAAA)c-1.00(H+)c-0.63(NO-3).在15.8 ℃时,k=(42.1±4.2) (mol/L)-0.13·s-1,活化能为(78.0±1.6) kJ/mol.研究了HAAA浓度、H+浓度、离子强度、Fe3+浓度、UO2+2浓度对HAAA与Pu(Ⅳ)还原反应速率的影响.结果表明:增加HAAA浓度、Fe3+浓度,降低H+浓度、离子强度,Pu(Ⅳ)还原速度增加;UO2+2浓度对Pu(Ⅳ)还原速度基本无影响.HAAA在U-Pu分离中具有良好的应用前景.  相似文献   

19.
本文在振动搅拌槽中,研究了UO_2(NO_3)_2-HNO_3-N_2H_5NO_3(H_2O)/30%TBP(煤油)体系的水相电解液组分浓度对U(Ⅵ)电解还原速率的影响。根据实验所得数据,经回归分析得到反应动力学微分方程 式中速度常数k一般说是温度的函数。25℃时,k=0.00187。在实验浓度范围内,U(Ⅵ)还原速率随U(Ⅵ)浓度升高而增大,表观反应级数为0.75级;而[N_2H_5~+]及[HNO_3]影响不大,反应级数近于0。  相似文献   

20.
为优化硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)的工艺条件,确定此反应过程的控制步骤,有针对性地提高控制步骤的反应速率,以确定N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的反应历程以及反应机理,通过实验研究确定了N2H4在Pt催化剂上的断键方式和分解机理。采用气相色谱法、分光光度法、滴定法及排水法对硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的产物进行分析,确定反应过程中N2H4的断键机制。结果表明,硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)反应过程中没有叠氮酸、氮氧化物及氢气生成,产物主要是N2,生成的N2的量与消耗的N2H4的量接近1∶1;当存在U(Ⅵ)时,生成的NH+4产量较低,当U(Ⅵ)反应完全后,NH+4的产生速率急剧增大;N2H4以N-N断键和N-H断键两种方式共存;反应温度升高有利于加快由U(Ⅵ)制备U(Ⅳ)还原反应的进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号