首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance back-illuminated In0.53Ga0.47 As/In0.52Al0.48As/InP metal-semiconductor-metal (MSM) detector is reported. A record responsivity of 0.96 A/W at 1.3-μm wavelength, corresponding to a quantum efficiency of 92%, was measured at 5 V and showed virtually no internal gain at 20 V. Packaged devices with 150-μm-diameter large detection area showed a 3-dB bandwidth of 4 GHz at 5 V with fiber pigtail butt-coupled package and 3.5 GHz with fiber pigtail silicon V-grooved package. Switching to front-illumination improves the bandwidth by 30-40% with 45-50% reduction of responsivity. Planar and mesa devices both show a low capacitance per unit area of 3.0 nF/cm2 and dark current density of 5.6×10-5 A/cm2 at 5 V. Preliminary reliability test results show that the detector biased at 5 V survived temperature cycling of -35°C to 200°C, high-temperature burn-in at 125°C for 168 h and subsequent short-term accelerated aging at 200°C for 120 h without degradation  相似文献   

2.
We report a novel silicon lateral trench photodetector that decouples the carrier transit distance from the light absorption depth, enabling both high speed and high responsivity. The photodetector, fabricated with fully VLSI compatible processes, exhibits a 6-dB bandwidth of 1.5 GHz at 3.0 V and an external quantum efficiency of 68% at 845 nm wavelength. A photoreceiver with a wire-bonded lateral trench detector and a BiCMOS transimpedance amplifier demonstrates excellent operation at 2.5 Gb/s data rate and 845 nm wavelength with only a 3.3 V bias  相似文献   

3.
Silicon-on-insulator waveguide-based silicide Schottky-barrier metal-semiconductor-metal (MSM) photodetectors were fabricated using a simple low-temperature Si-process. Without optimization, the detector achieves a 3-dB bandwidth of ~ 7 GHz at -3-V bias and a responsivity of ~ 19 mA/W at -1-V bias, with very weak dependence on wavelength ranging from 1520 to 1620 nm. Compared to the silicide Schottky-barrier photodiode with the same NiSi2 absorber, the MSM detectors offer the benefits of high speed, large responsivity, and ease of fabrication. Approaches for optimization are addressed.  相似文献   

4.
Planar metal–semiconductor–metal (MSM) photodetectors with very thin hydrogenated amorphous silicon (a-Si) films were fabricated for the detection of ultraviolet (UV) radiation. Since DNA and proteins strongly absorb UV radiation, these detectors find application in DNA and protein detection. The performance of top and bottom electrode MSM structures with aluminum electrodes is compared. The measured results include a responsivity of 150 mA/W and an external quantum efficiency of 74% at a wavelength of 260 nm for the top electrode configuration at a bias of 2 $hbox{V}/muhbox{m}$ and a 10- $muhbox{m}$ finger spacing.   相似文献   

5.
Very high quantum efficiency, UV-enhanced silicon photodiodes have been developed by arsenic diffusion into p-type silicon as an alternative to the inversion layer photodiodes commonly used in precise radiometric and spectroscopic measurements. The fabricated diodes had an unbiased internal quantum efficiency that was 100% from 350 to 550 nm, and that exceeded 100% at shorter wavelengths. A typical responsivity at 200 nm was 0.1 A/W. No degradation in responsivity was detected anywhere in the 200–1100 nm range when these devices were exposed to 20 mW/cm2 of 254 nm radiation for 60 days. Thus the theoretical maximum value of internal quantum efficiency for a diffused photodiode appears to have been achieved in the UV and short wavelength visible, without compromising the diode's long term stability. This is in marked contrast to older types of diffused photodiodes, which either were “dead” in the UV, or exhibited a spectral response vs flux characteristic that changed considerably with UV exposure.  相似文献   

6.
A novel silicon photodetector suitable for high-speed, low-voltage operation at 780- to 850-nm wavelengths is reported. It consists of an interdigitated p-i-n detector fabricated on a silicon-on-insulator (SOI) substrate by using a standard bipolar process. Biased at 3.5 V, this device attains a -3-dB bandwidth in excess of 1 GHz at λ=840 nm. The dc responsivity measured at λ=840 nm on nonoptimized structures ranges from 0.05 to 0.09 A/W, depending on the finger shadowing factor. A new approach for improving the responsivity is proposed and quantitatively analyzed. The fabricated devices exhibit extremely low dark currents, small capacitance, large dynamic range, and no evidence of low-frequency gain. The overall performance and process compatibility of these photodetectors make them viable candidates for the fabrication of silicon monolithic receivers for fiber-optic data links  相似文献   

7.
Pt/CdS Schottky势垒紫外探测器的研制   总被引:1,自引:3,他引:1  
秦强  朱惜辰  杨文运 《红外技术》2006,28(4):234-237
介绍了Pt/CdS金属半导体接触Schottky势垒形成及In/CdS的欧姆接触工艺研究,由此制成了紫外探测器.测试了探测器的Ⅰ-Ⅴ特性,零偏下的光谱响应和器件的频率响应.观察了器件的反偏响应情况.获得的探测器在λ=440am处加两伏反偏时的响应率为0.17A/W,内量子效率最大可达64%.  相似文献   

8.
Finger photodiodes in PIN technology are introduced to enhance the responsivity for blue and ultraviolet light. A thick low doped epitaxial layer results in high responsivity and high bandwidth also for red and near-infrared light. Results of PIN finger photodiodes are compared to that of PIN photodiodes for 10- and 15-mum epitaxial intrinsic layer thickness. The cathode finger structure results in a high responsivity of 0.20 A/W (quantum efficiency 61%) for 410-nm light and a bandwidth of 1.25 GHz for 10- mum epi thickness at a reverse bias voltage of 3 V. The rise and fall times with an epitaxial layer thickness of 15 mum are below 1 ns for the wavelength range from 410 to 785 nm.  相似文献   

9.
基于微电子平面工艺,采用电子束蒸发Pt方法,制备了基于CdS材料的肖特基紫外探测器。对该器件的I-V特性、光谱响应率、量子效率等参数进行了测试,结果表明器件具有良好的整流特性,室温零偏压下光谱响应范围250~500 nm,在500 nm波长处达到最大光谱响应率0.285 A/W,量子效率为75.3%。并根据热电子发射理论对测试结果进行了计算得到理想因子为1.024,肖特基势垒高度为0.859 eV。  相似文献   

10.
采用Ni/Au作为肖特基接触制备了一维阵列MSM 4H-SiC紫外光电探测器,并测量和分析了阵列器件的Ⅰ-Ⅴ、光谱响应特性.结果表明,阵列探测器性能均匀性好,击穿电压均高于100V.阵列中单器件暗电流小,在偏压为20V的时候,最大暗电流均小于5pA(电流密度为5nA/cm2),光电流比暗电流高3个数量级以上.其光谱响应表明,单器件在电压为20V时的响应度约为0.09A/W,比400nm时的比值均大5000倍,说明探测器具有良好的紫外可见比.  相似文献   

11.
A silicon-based integrated NMOS-p-i-n photoreceiver   总被引:1,自引:0,他引:1  
For large-volume optoelectronics applications, the low cost, manufacturability and reliability of silicon MOSFET technology are advantageous. In addition, silicon photodetectors operate quite efficiently at the 850 nm wavelength of economical AlGaAs light sources. In this paper, we report on a silicon-based monolithic optical receiver. The fabrication of the integrated lightwave receiver was carried out on a nominally undoped p-type Si substrate. The p-i-n photodetector was fabricated directly on the high-resistivity substrate so that the thickness of the detector depletion layer was approximately equal to the optical absorption length of 850 nm light in silicon. A more heavily-doped p-well was formed for the NMOSFET fabrication. The silicon photodiodes had a dark current of 20 nA at 5 V, a breakdown voltage greater than 60 V, and a zero-bias capacitance of 40 fF. The external quantum efficiency of the photodiode at 870 nm was approximately 67% at 5 V without an AR coating, and the bandwidth of the device was approximately 1.3 GHz. Frequency response evaluation of the receiver indicated a circuit-design-limited bandwidth of 30 MHz with open eye diagrams demonstrated at 40 MB/s  相似文献   

12.
A double photodiode (DPD) and a phototransistor were implemented in an industrial 0.8 μm bipolar complementary metal oxide semiconductor (BiCMOS) n-well process. Both devices are 100% BiCMOS compatible, so that no process modifications were necessary. A −3 dB bandwidth of more than 200 MHz was measured for the DPD. The rise and fall times of the photodiode are less than 1 ns. By an optimized antireflection coating layer for a wavelength of 638 nm a quantum efficiency of η=95%, which corresponds to a responsivity of R=0.49 A/W, is achievable. A phototransistor with a light-sensitive area of 53×53 μm2 was developed. Its current amplification of B=300 results in a much larger responsivity compared to the photodiodes. Measurements have shown a −3 dB bandwidth of 7.8 MHz for the phototransistor.  相似文献   

13.
金属-半导体-金属(MSM)结构4H-SiC紫外光电探测器的研制   总被引:5,自引:2,他引:3  
MSM结构探测器具有结构与工艺简单、制备成本低、量子效率高等特点而在探测器应用中得到重视。本文制备了采用镍作为肖特基接触形成的MSM4H—SiC紫外光电探测器,并测量和分析了在不同的偏压下其光电特性。结果表明,该探测器的暗电流非常小,在偏压为15V的时候,漏电流密度约为70nA/cm^2,光电流比暗电流高约2个数量级,其光谱响应表明,其最高光谱响应与380nm的比值约为1000倍,说明该探测器具有良好的紫外可见比。  相似文献   

14.
The first demonstration is reported of a long-wavelength receiver that monolithically integrates an InGaAsP waveguide, an InAlAs-InGaAs metal-semiconductor-metal (MSM) detector, and an InAlAs-InGaAs high-election-mobility transistor (HEMT) amplifier. External responsivities in response to a guided signal of 0.43 and 0.5 A/W were recorded, respectively for a 150- and a 300- mu m-long detector integrated with an InGaAsP waveguide. This corresponds to an internal quantum efficiency of about 95% after taking account of the combined external losses such as insertion loss between waveguide and fiber and propagation loss in the waveguide. A pulse response of 200 ps. corresponding to a bandwidth of about 820 MHz, was measured at the output of the HEMT amplifier. The receiver represents a major advance toward achieving high-performance integrated receiving components for long-wavelength lightwave systems.<>  相似文献   

15.
GaN metal-semiconductor-metal (MSM) ultraviolet photodetectors with titanium tungsten (TiW) transparent electrodes were fabricated and characterized. It was found that the 10-nm-thick TiW film deposited with a 300-W RF power can still provide a reasonably high transmittance of 75.1% at 300 nm, a low resistivity of 1.7/spl times/10/sup -3/ /spl Omega//spl middot/cm and an effective Schottky barrier height of 0.773 eV on u-GaN. We also achieved a peak responsivity of 0.192 A/W and a quantum efficiency of 66.4% from the GaN ultraviolet MSM photodetector with TiW electrodes. With a 3-V applied bias, it was found that minimum noise equivalent power and maximum D/sup */ of our detector were 1.987/spl times/10/sup -10/ W and 6.365/spl times/10/sup 9/ cmHz/sup 0.5/W/sup -1/, respectively.  相似文献   

16.
Responsivity of silicon photodiodes was measured from -100 C to +50 C in the 3 to 250 nm wavelength range using synchrotron and laboratory radiation sources. Two types of silicon photodiodes were studied, the AXUV series having a thin nitrided silicon dioxide surface layer and the SXUV series having a thin metal silicide surface layer. Depending on the wavelength, the responsivity increases with temperature with the rates 0.013%/C to 0.053%/C for the AXUV photodiode and 0.020%/C to 0.084%/C for the SXUV photodiode. The increase in responsivity is consistent with the decrease in the silicon bandgap energy which causes a decrease in the pair creation energy. These results are particularly important for dose measurement in extreme ultraviolet (EUV) lithography steppers and sources since the detector temperature often increases because of the high EUV intensities involved.  相似文献   

17.
A two-dimensional model of a 4H-SiC metal-semiconductor-metal(MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method.The structure-dependent spectral response of a 4H-SiC MSM detector is calculated by solving Poisson’s equation,the current continuity equation and the current density equation.The calculated results are verified with experimental data.With consideration of the reflection and absorption on the metal contacts,a detailed study involving various electrode heights(H),spacings (S) and widths(W) reveals conclusive results in device design.The mechanisms responsible for variations of responsivity with those parameters are analyzed.The findings show that responsivity is inversely proportional to electrode height and is enhanced with an increase of electrode spacing and width.In addition,the ultraviolet (UV)-to-visible rejection ratio is > 103.By optimizing the device structure at 10 V bias,a responsivity as high as 180.056 mA/W,a comparable quantum efficiency of 77.93%and a maximum UV-to-visible rejection ratio of 1875 are achieved with a detector size of H = 50 nm,S =9μm and W = 3μm.  相似文献   

18.
AlGaN MSM紫外探测器   总被引:2,自引:0,他引:2  
用通过MOCVD生长的未掺杂的n-Al0.3Ga0.7N制备了金属-半导体-金属 (MSM)结构紫外探测器。器件在2.5V偏压时的暗电流为1pA,在6.5V偏压时的暗电流为1nA.在1V偏压下和298nm波长处,探测器的电流响应率为0.038A/W,在300nm 波长处有陡峭的截止边,这与文献中介绍的AlxGa1-xN探测器在x=0.3时截止波长为 300nm相一致。  相似文献   

19.
A large-area InGaAs metal-semiconductor-metal (MSM) photodetector with 1/spl times/1 mm/sup 2/ photoactive area for free-space optical communication applications has been designed, fabricated, and characterized. Interdigitated electrodes of 2-/spl mu/m widths and 15-/spl mu/m spacings are designed to maximize the responsivity, and enable MSM photodetectors to reach a maximum responsivity at 1.53-/spl mu/m wavelength. By employing a two-step InP/InGaAsP transition layer, the dark current density of 45 fA//spl mu/m/sup 2/ was achieved at 10-V bias and at room temperature. Dark current-bias voltage curves were measured as a function of temperature from 40 to 270 K to estimate the activation energy. A 3-dB bandwidth of 210 MHz was obtained at a 10-V bias, and the measured result was compared with the designed bandwidth.  相似文献   

20.
The spectral response of back-surface-illuminated p-GaN-i-GaN/AlGaN multiplequantum well (MQW)-n-AlGaN ultraviolet (UV) photodetector is reported. The structure was grown by molecular-beam epitaxy on a c-plane sapphire substrate. A MQW is introduced into the active region of the device to enhance the quantum efficiency caused by the high absorption coefficient of the two-dimensional (2-D) system. Another advantage of using MQW in the active region is the ability to tune the cutoff wavelength of the photodetector by adjusting the well width, well composition, and barrier height. The zero-bias peak responsivity was found to be 0.095 A/W at 330 nm, which corresponds to 36% quantum efficiency from as-grown p-i-n GaN/AlGaN MQW devices. An anomalous effect, occurring in responsivity as a negative photoresponse in the spectra peaked at 362 nm because of poor ohmic contact to p-type GaN, was also observed. Etching the sample in KOH for 30 sec before fabrication removed the surface contaminants and improved the surface smoothness of the as-grown sample, resulting in significant improvement in the device performance, giving a peak responsivity of 0.12 A/W. The device has a quantum efficiency of 45% at 330 nm without the anomalous negative photocurrent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号