首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究Ti和C添加对Nd9.4Fe79.6B11合金磁性能的影响规律。结果表明:Ti和C联合添加能够在不降低合金剩磁的情况下显著提高合金的矫顽力,最佳工艺条件下制备出的Nd9.4Fe75.6Ti4B10.5C0.5合金薄带的剩磁Br=0.91T,矫顽力Hcj=975.6kA/m,磁能积(BH)max=135.4kJ/m3。在磁体密度为6.1g/cm3时,黏结Nd9.4Fe75.6Ti4B10.5C0.5磁体剩磁Br=0.68T,内禀矫顽力Hcj=975kA/m,最大磁能积(BH)max=76 kJ/m3,性能和MQ-D磁粉制备的黏结磁体性能相当,具有低价位高性能的特点。  相似文献   

2.
研究Ti和C添加对Nd9.4Fe79.6B11合金磁性能的影响规律。结果表明:Ti和C联合添加能够在不降低合金剩磁的情况下显著提高合金的矫顽力,最佳工艺条件下制备出的Nd9.4Fe75.6Ti4B10.5C0.5合金薄带的剩磁Br=0.91T,矫顽力Hcj=975.6kA/m,磁能积(BH)max=135.4kJ/m3。在磁体密度为6.1g/cm3时,黏结Nd9.4Fe75.6Ti4B10.5C0.5磁体剩磁Br=0.68T,内禀矫顽力Hcj=975kA/m,最大磁能积(BH)max=76 kJ/m3,性能和MQ-D磁粉制备的黏结磁体性能相当,具有低价位高性能的特点。  相似文献   

3.
采用快淬和晶化退火法制备了成分为Nd8.5Fe76.6-xGaxCo5Zr2.7B6.2(x=0~0.5)的纳米晶复合永磁粘结磁体,研究了其磁性能的变化.结果表明,适量Ga元素的添加能有效提高磁体退磁曲线的方形度,进而提高磁体的最大磁能积.Ga含量0.2%(原子分数),快淬速度为16.0m/s的合金经670℃/4min的晶化处理后,制得的粘结磁体具有较佳的磁性能:Br=0.745T,jHc=730.1kA/m,(BH)max=80.1kJ/m3.适量的Ga元素的添加可以提高磁体的温度稳定性.Ga含量为0.2%(原子分数)的合金具有较好的温度系数,在25~150℃温度区间内剩磁温度系数α=-0.091%/℃,内禀矫顽力温度系数β=-0.353%/℃.  相似文献   

4.
为获得磁性能适中的磁体,采用流动温压成型技术制备了各向同性粘结Nd Fe B/锶铁氧体复合磁体.利用振动样品磁强计(VSM)研究了不同粘结剂对粘结Nd Fe B/锶铁氧体复合磁体磁性能的影响.研究表明:环氧值适中的酚醛环氧树脂制备的磁体具有较好的磁性能;当采用环氧值为0.480 mol/100 g酚醛环氧树脂BPANE8200H做粘结剂时,粘结Nd Fe B/锶铁氧体复合磁体获得了最佳的磁性能:Br=0.55 T,Hcj=620.6 k A/m,(BH)max=45.6 k J/m3.在保证磁体磁性能的前提下兼顾力学性能,粘结磁体流动温压成型温度参数的设置必须考虑粘结剂的软化点温度.  相似文献   

5.
采用放电等离子烧结技术(Spark Plasma Sintering,简称SPS技术)将快淬Nd4.5Fe77B18.5薄带制备成块状纳米晶复合磁体.着重研究了热处理工艺对磁体密度、微观结构和磁性能的影响.结果表明,通过直接烧结得到的磁体具有超细纳米晶结构,合适的热处理可以消除残余非晶,得到较好的晶体结构和磁性能.但过高的热处理温度和较长的保温时间的增大会造成晶粒长大,结果导致磁性能的恶化.在最佳热处理条件下得到的磁体的磁性能为Br=1.014T,JHc=237.21 kA/m,(BH)max=61.85 kJ/m3.  相似文献   

6.
利用高频感应加热,对熔体快淬Nd8Fe86B6非晶薄带进行了快速晶化。结果表明,快速加热可使非晶带迅速晶化,从而得到高性能的纳米双相Nd2Fe14B/α-Fe永磁体。加热速度对薄带的磁性能影响较大。不同的加热速度下,合适的加热时间可以得到较高磁学性能。最佳工艺所得Nd8Fe86B6薄带磁性能可达(BH)max=105.55kJ/m^3,Br=0.93T,Hci=258.26kA/m。  相似文献   

7.
采用将Nd-Fe-B磁粉与Fe粉混合的方法,并结合真空感应热压烧结技术制得高性能的各向同性及各向异性复合磁体。研究了Fe粉含量对热压磁体磁性能的影响,以及温度和压力对磁体致密度和磁性能的影响。结果表明,适量的Fe粉添加(3%,质量分数)可提高热压磁体磁性能;升高温度或提高压力均可大幅提高磁体致密度,但过高的烧结温度使晶粒快速长大,恶化磁体磁性能,而温度过低磁体难易全致密化。在最佳热压温度及压力下制备的热压磁体具有最佳的磁性能:Br=0.852T,Hcj=798kA/m,(BH)m=131.5kJ/m3,磁体密度达7.72g/cm3;热变形后,最大磁能积达331kJ/m3。  相似文献   

8.
研究了使用不同快淬速度制备的Nd3 6Pr5 4Fe83Co3B5合金中Nd2Fe14B/α-Fe复合纳米晶结构的形成.采用X射线(XRD)、透射显微(TEM)分析技术和振动样品磁强计(VSM)观测和测量了材料的微结构和磁性.结果表明,使用最佳淬速(20m/s)形成的Nd2Fe14B/α-Fe复合纳米晶结构晶粒细小,晶粒尺寸均匀Nd2Fe14B相和α-Fe相的平均晶粒尺寸分别为14nm、16nm.合金中α-Fe相的体积分数为48.6%.纳米晶合金的磁性能为Jr=1.108T,Hc=446.5kA/m,(BH)max=193.6kJ/m3,剩磁比Jr/Js=0.736.  相似文献   

9.
主要研究了添加Cr置换Nd5Fe72.3Cu0.2Co4B18.5合金中的Co元素对Fe3B/Nd2Fe14B型纳米复合永磁体磁性能与微观结构的影响.结果表明相应于Co元素而言,添加Cr元素可有效细化NdFeB合金软、硬磁性相的晶粒尺寸;随退火温度的升高,添加Cr元素的Nd5Fe72.3Cu0.2Cr4B18.5合金的jHc值随退火温度的变化不明显.DTA曲线分析表明,NdFeCuCoB具有一个放热峰,而NdFeCuCrB具有两个放热峰.NdFeCuCrB非晶合金在650℃退火处理30min可获得最佳磁性能Br=0.944T,jHc=383kA/m,(BH)max=77.5kJ/m3.  相似文献   

10.
杨丽萍  谭晓华  徐晖  徐兴国 《功能材料》2012,43(9):1102-1105
采用熔体快淬法及真空退火工艺制备了Nd9.5Fe76Co5Zr3-xNbxB6.5(x=0~3.0)粘结磁体,研究了其磁性能及温度系数。结果表明,随着Nb含量的增加,合金剩磁逐渐提高,磁能积和矫顽力呈现先增大后减小的趋势。Zr元素与Nb元素复合添加,能够有效地改善矫顽力温度系数β。经最佳条件退火处理后制备的Nd9.5Fe76Co5Zr1.5Nb1.5B6.5的粘结磁体,具有最优的综合磁性能:Br=0.717T,Hcj=773kA/m,(BH)max=82kJ/m3,α20~150℃=-0.111%/℃,β20~150℃=-0.356%/℃。  相似文献   

11.
马毅龙  李军  陈登明  孙建春 《功能材料》2011,42(Z3):389-390,394
使用放电等离子烧结(SPS)可在短时间内将非晶Nd13.5Fe80.5B6粉末晶化,且可获得接近于全致密的各向同性磁体,其剩磁、矫顽力、最大磁能积分别为Br=0.8T,Hci=1346kA/m,(BH)m=108kJ/m3.热变形后,随变形量的增加,硬磁相晶粒的取向度增加,Br及(BH)m大幅增加,在65%时达最大:B...  相似文献   

12.
Nb的添加对Fe3B/Nd2Fe14B纳米永磁体磁性能与微观结构的影响   总被引:1,自引:1,他引:0  
研究了微量合金元素Nb的添加对Fe3B/Nd2Fe14B型纳米复合永磁体微观结构与磁性能的影响规律。结果表明,添加Nb元素可以稳定非晶相,阻碍Fe3B粒子的结晶动力学。Nd5.5Fe70.0Co5Cu0.5Nb0.5B18.5非5晶合金在640℃退火处理30min可获得最佳磁性能:Br=1.05T,JHc=367kA/m,(BH)max=80.2kJ/m^3。Nb与Cu的复合添加对Fe3B晶粒的细化效果更显著;Nb元素的添加可以提高合金的磁性能,但添加量必须适中。  相似文献   

13.
采用SC工艺制备高性能烧结钕铁硼磁体的研究   总被引:5,自引:0,他引:5  
研究了采用SC(strip casting)工艺制备的高性能烧结钕铁硼磁体。结果表明:速凝薄带主要由厚度约3μm的(2:14:1)相片状晶组成.片状晶之间被厚度0.2~0.5μm的富Nd相薄层隔开,没有α-Fe枝状晶存在。速凝薄带经氢破碎、气流磨、压型、烧结后磁体的永磁性能达到:Br=1.431T,jHe=1022kA/m,(BH)max=387kJ/m3。  相似文献   

14.
采用快淬和晶化退火法制备了成分为Nd8.5Fe75-xCo5Cu1Nb1Zr3CrxB6.5(x=0.5,1,2)的纳米晶复合永磁合金.研究了Cr的添加对合金晶粒尺寸及磁性能的影响,结果表明适量Cr的添加能有效抑制磁性相晶粒长大,提高了合金的矫顽力.Cr含量为1%(at%),快淬速度为15.0m/s的合金经690℃/4min的晶化处理,由晶化磁粉粘结所得到的磁体最佳磁性能为:Br=0.62T,jHc=806.4kA/m,(BH)max=69.0kJ/m3.  相似文献   

15.
关颖  杨丽 《材料研究学报》2001,15(6):615-618
研究了使用不同快淬速度制备的Nd3.6Pr5.4Fe83Co3B5合金中Nd2Fe14B/a-Fe复合纳米晶结构的形成。采用X射线(XRD)、透射显微(TEM)分析技术和振动样品磁强计(VSM)观测和测量了材料的微结构和磁性。结果表明,使用最佳淬速(20m/s)形成的Nd2Fe14B/a-Fe复合纳米晶结构晶粒细小,晶粒尺寸均匀。Nd2Fe14B相和a-Fe相的平均晶粒尺寸分别为14nm、16nm。合金中a-Fe相的体积分数为48.6%。纳米晶合金的磁性能为Jr=1.108T,Hc=446.5kA/m,(BH)max=193.6kJ/m^3,剩磁比Jr/Js=0.736。  相似文献   

16.
采用声化学法、放电等离子烧结技术(SPS)和热变形工艺制备致密各向同性和各向异性Nd_2Fe_(14)B/αFe复合磁体,研究了软磁相包覆对磁体的结构和性能的影响.结果表明,软磁相α-Fe对各向同性Nd_2Fe_(14)B/α-Fe复合磁体的影响主要表现为增强两相间的交换耦合作用,从而提高剩磁.当α-Fe体积分数的数值适当(不超过2%)时,各向异性Nd_2Fe_(14)B/α-Fe磁体形成较好的c轴晶体织构,具有较高的磁性能.α-Fe体积分数为1%的磁体性能最高:B_r=1.367 T,H_(ci)=712 kA/m,(BH)_m=327 kJ/m~3.  相似文献   

17.
采用流动温压成型工艺制备黏结钕铁硼/锶铁氧体复合磁体,研究温压工艺参数对钕铁硼/锶铁氧体复合磁体磁性能的影响。结果表明:随着温压温度、压制时间以及保压压力的提高,黏结复合磁体的磁性能呈现先增大后减小的趋势。流动温压成型参数的选择与黏结剂有关,采用酚醛环氧树脂BPANE8200为黏结剂时,流动温压成型的最佳工艺参数:77℃加载900MPa并保压8min,复合磁体的剩磁B_r、内禀矫顽力H_(cj)以及最大磁能积(BH)max均获得最大值,即Br=522mT,Hcj=740.48kA/m,(BH)max=39.82kJ/m^3。  相似文献   

18.
利用差热(扫描)分析、X射线、透射电镜、振动样品磁强计研究了添加Co、Dy对Fe3B/Nd2Fe14B 纳米复合永磁材料的微结构和性能的影响.结果表明:添加适当的微量元素可以提高Nd4.5Fe77B18.5纳米复合永磁材料的内禀磁性,改进微结构,从而提高材料的永磁性能.在Nd4.5Fe77B18.5中添加1%-3%(原子分数)的Co、Dy明显地降低材料的晶化温度和最佳热处理温度、提高了2:14:1相的居里温度、改善了纳米复合永磁材料的微观结构,从而提高材料的永磁性能.与Nd4.5Fe77B18.5相比,Nd3.5Fe74Co3DylBl8.5的永磁性能为:Br=1.06T,jHc=328kA/m,(BH)max=108.9kJ/m^3,分别提高了26%,17%和104%.  相似文献   

19.
通过粉末冶金工艺制备了高剩磁2:17型Sm-Co永磁材料,系统地研究了磁粉平均粒度对磁体性能和微结构的影响。随着球磨时间的延长,磁粉的平均粒度D由6.2μm逐渐减小到4.3μm,烧结磁体的平均晶粒尺寸从约80μm减小到约30μm,磁体中的氧含量明显增加。当D在5.0~6.0μm范围时,烧结磁体的综合性能较好,特别是在D=5.7μm时,磁体具有最佳的磁性能:Br=1.16T,Hcj>2069.6kA/m和(BH)m=231.6kJ/m3。  相似文献   

20.
采用粉末冶金法制备稀土永磁Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5,研究烧结温度对磁体的磁性能的影响.结果表明:随着烧结温度的提高,剩磁Br、内禀矫顽力Hci及最大磁能积(BH)max都先增加后降低.虽然Br在烧结温度为1220℃时获得最大值0.95T,但磁体的综合磁性能在烧结温度为1215℃时最优,Br、Hci和(BH)max分别达到0.94T、2276.6kA·m-1和171.9kJ·m-3.1215℃烧结的磁体的温度稳定性较好,有望应用到550℃环境中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号