首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature in twin screw extrusion of a window profile compound have been studied. Compounds were made with and without an acrylic impact modifier. Fusion levels of the extruded profiles were rated from values of the rubbery plateau modulus at temperatures near 110°C. Impact strength was measured at room temperature using notched tensile specimens at 1 m/s jaw separation rate. The impact strength of these materials does not increase with fusion level once an adequate degree of gelation has been achieved. The impact-modified compound shows a dramatic improvement in impact strength when the melt temperature was increased from 319°F to 343°F. A further increase to 365°F had no effect. The compound without impact modifier exhibited no improvements in impact strength over the whole extrusion temperature range. Conflicting reports in the literature on effects of fusion level on impact strength of PVC articles probably reflect different interactions between extrusion conditions and compound composition.  相似文献   

2.
The extensional rheological properties of three grades of polyethylene melts, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) were measured using a melt spinning technique under the test conditions with temperature ranging from 150 to 210°C and extrusion rate varying from 11.25 to 22.50 mm s?1. The results showed that the melt strength decreased with a rise of temperature while increased with an increase of extensional rate. With the rise of extensional strain rate and temperature, the melt extensional viscosity decreased. The extensional stress and viscosity reduced with increasing extrusion velocity when the temperature and extensional rate were constant. Moreover, the melt strength and extensional viscosity of the LDPE resin was the highest and the LLDPE was the lowest under the same experimental conditions. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
The viscosities of several types of lipids saturated with supercritical carbon dioxide (SC-CO2) were measured with a high-pressure capillary viscometer. Oleic acid and linoleic acid were evaluated from 85 to 350 bar at 40 and 60°C. The more SC-CO2-soluble methylated derivatives of these fatty acids were evaluated from 90 to 170 bar at 40 and 60°C. The complex mixture of anhydrous milk fat (AMF) was evaluated from 100–310 bar at 40°C. The viscosities of the methylated fatty acids saturated with SC-CO2 decreased between 5 and 10 times when the pressure increased from 1 to 80 bar, followed by a further decrease by a factor of 2 to 3 when the pressure was increased from 80 to 180 bar. The viscosities of the fatty acids and AMF saturated with SC-CO2 had viscosity reduction similar to the methylated fatty acids between 1 and 80 bar, but they decreased much less between 80 and 350 bar. At constant pressure, the viscosity of the fatty acids and AMF decreased with increasing temperature, whereas the viscosity of the methylated fatty acids increased with increasing temperature. The lipid/SC-CO2 mixtures were Newtonian, and their viscosities were best interpreted by using the mass concentration of dissolved SC-CO2 in the lipids and the pure component viscosities.  相似文献   

4.
PVC/EVA blends were studied with an extrusion plastometer in order to examine the effect of EVA on the processability of PVC. The melt flow of PVC/EVA blends containing from 4 to 30 weight percent EVA follows a simple power law between 160 and 180°C. EVA reduced the melt viscosity and enhanced processability. Blends of PVC and EVA were morphologically incompatible. The molecular weight of extruded PVC in the blends was unchanged.  相似文献   

5.
Linear and nonlinear rheological properties of poly(vinyl chloride) (PVC)‐poly(n‐butyl acrylate)‐PVC triblocks of different compositions, obtained by single electron transfer‐degenerative chain transfer living radical polymerization, are investigated, focusing on the effect of crystallites. Dynamic mechanical thermal analysis results show the existence of two glass transition temperatures, denoting microphase segregation. However, rather than phase separation, it is the presence of two types of crystals that melt at Tm1 = 127 ± 0.8°C and Tm2 = 185 ± 2°C, respectively, the factor that determines the rheological response of the copolymers. To the difference with PVC homopolymers, extrusion flow measurements at very low temperatures (T = 100°C) are possible with the copolymers. A change in the viscosity‐temperature dependence is observed below and above the lowest melting temperature. Notwithstanding the microphase separation and the presence of crystallites, experiments carried out in conditions similar to industrial processing reveal a remarkable viscosity reduction for our copolymers with respect to PVC obtained by single electron transfer‐degenerative chain transfer living radical polymerization, conventional PVC, and PVC/[diethyl‐(2‐ethylhexyl) phthalate] compounds. Extrudates free of surface instabilities are obtained at low extrusion temperatures, such as 90–100°C. J. VINYL ADDIT. TECHNOL., 21:24–32, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
The effect of degree of polymerization (DP) on the gelation and flow processability of poly(vinyl chloride) (PVC) was studied. Sheets with adjusted degree of gelation were prepared by rolling rigid pipe formulation suspension PVC compounds with DPs of 800, 1050 and 1300 by changing the milling temperature. Their degrees of gelation were measured with DSC and their capillary flow properties were measured with a capillary rheometer at 150, 170 and 190°C and the effect of DP on the relation between gelation and flow processabilities was studied. Because of the higher shearing heat during milling, the sample with the higher DP had a higher history temperature and thus tended to show a higher degree of gelation. The viscosity increased as the gelation increased. The dependency of viscosity on DP was higher at higher milling and extrusion temperatures and thus at a higher degree of gelation and a lower shear rate. This was assumed to be attributed to the more prominent uniform molecular flow as against the particle flow. The die swell increased with increasing the milling and extrusion temperatures and hence with increasing the gelation. A sample with a lower DP tended to show a larger die swell and this tendency was even more pronounced at the higher extrusion temperature. The melt fracture easily occurred when a sample with advanced gelation was extruded at low temperature. Whereas at low milling temperatures a sample with the lower DP showed a lower critical shear rate at onset of melt fracture, and thus easily generating melt fracture, at high milling temperatures it showed a higher critical shear rate and hence scarcely generated melt fracture. These experimental results were explained by the fact and concept that a sample with a lower DP shows a higher increase in the gelation during extrusion and/or the slighter feature of particle flow as against the uniform molecular flow at the same gelation level. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1915–1938, 2004  相似文献   

7.
The effect of the sample extrusion temperature between 160° and 180°C on the elongational flow properties of a low molecular weight suspension PVC (unplasticized) has been studied with the Rheometrics Extensional Rheometer. The results of both the tensile creep measurements at a constant stress of 24 KPa and the stretching experiment at a constant strain rate of 0.01 sec?1 indicated the existence of a rheological transition at 185°C marked by the dual valued flow activation energy and also by the temperature dependence of the tensile stress-strain curves. Increasing extrusion temperature increased both the flow activation energy and the extensional viscosity below the transition temperature.  相似文献   

8.
Abstract

The melt flow properties of a linear low-density polyethylene (LLDPE) were measured by means of a capillary rheometer under the experimental conditions of temperatures from 220° to 260°C and apparent shear rates varying from 12 to 120 s?1. The end pressure drop (ΔP end) was determined by employing the Bagley's plotting method. The results showed that ΔP end increased nonlinearly with increasing shear stress. The end pressure fluctuation phenomenon was observed at lower shear stress level, and several plateau regions were generated in the end pressure drop-shear stress curves, suggesting onset of the wall-slip phenomenon during die extrusion of the resin melt. The critical shear stress with onset end pressure fluctuation phenomenon increased with a rise of temperature. Furthermore, the melt shear flow did not strictly obey the power law. The melt shear viscosity decreased nonlinearly with increasing shear stress and with a rise of temperature, whereas the dependence of the melt shear viscosity on the test temperature accorded with a formula similar to the Arrhenius expression.  相似文献   

9.
The reaction of boric acid with wood fibers in a polymer melt was examined using 13C-nuclear magnetic resonance (NMR), 11B-NMR, differential scanning calorimetry, dynamic mechanical analysis, and component extraction and by the determination of material properties. Samples were blended at 350and 380°F in a roll mill. The use of a plasticizer in the melt to facilitate the reaction of the acid with the wood fiber was studied. NMR data showed that no significant reaction occurred between the boric acid and the polystyrene. Experimental evidence supports the reaction of boric acid with wood components. The ultimate strength of the composites was either reduced or not significantly altered by the reaction, depending upon conditions. However, the stiffness increased significantly with boric acid additions for the 350°F reactions, but behaved differently for the same additions at 380°F. The glass transition temperature of the polystyrene was lowered by the addition of plasticizer, as expected, while boric acid addition had little effect. Extracted samples showed that some boric acid remained with the wood fraction. These preliminary data suggest that boric acid does react with wood fiber under the conditions of this study. These investigations illustrate the feasibility of performing chemical reactions on the wood phase of wood/polymer composites during the extrusion process. Further research is recommended. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The correlation between the entry pressure drop and elongation viscosity during entry converging flow of polymer melts was discussed in this article. The entry pressure drop during extrusion of a low density polyethylene (LDPE) melt and a linear low density polyethylene (LLDPE) melt was measured by means of a capillary rheometer under test conditions with temperature of 170 °C and shear rate varying from 10 to 300 s−1. The results showed that the entry pressure drop increased nonlinearly with an increase of the shear stain rate, and the variation of entry pressure drop of the two melts was close to each other. The melt elongation viscosity of the two resins was estimated using Cogswell equation from the measured entry pressure drop data, and the predictions were compared with the melt extension viscosity measured by using a melt spinning technique published in literature. It was found that the melt extension viscosity from entry converging flow was slightly lower than that from melt spinning technique under the same temperature and extension strain rate.  相似文献   

11.
LARCTM-TPI is a linear aromatic polyimide that was developed at NASA Langley Research Center in the 1970's and subsequently licensed to Mitsui Toatsu Chemicals, Inc., (MTC) in Japan. This company has made it easier to process for use in application as a structural adhesive or as a composite matrix resin. The present forms that exist are (1) high melt viscosity or Low Flow Grade (LFG); (2) medium melt viscosity or Medium Flow Grade (MFG); and (3) low melt viscosity or High Flow Grade (HFG). As expected, the low melt viscosity material is the easiest to process but has poor toughness; the high melt viscosity material is very tough but is more difficult to process. Because of these two extreme situations we have worked closely with MTC to develop an optimized system. This work has resulted in the medium melt viscosity material as well as two other modified or blended medium-flow variations.

These novel forms of LARCTM-TPI have resulted in adhesives that can be melt processed at pressures as low as 0.01 MPa (15 psi) at temperatures between 343–371°C (650–700°F). Evaluation of adhesive performance has been accomplished using lap shear specimens and evaluating flow, wet out and shear strength. Initial strengths for these optimized materials range from 20.7–41.4 MPa (3000–6000 psi) at room temperature and 13.8–20.7 MPa (2000–3000 psi) at elevated test temperatures.  相似文献   

12.
The processing of two unplasticized compounds of poly(vinyl chloride) (PVC) with and without wood flour (WF) was performed in a Brabender mixing chamber, at various chamber temperatures between 130 and 200°C and at a shear rate of 12.61 s?1. The test was carried out up to the time corresponding to the equilibrium state of the torque, and the variations of torque and real melt temperature as functions of time were analyzed. It was found that the addition of WF led to fusion at lower chamber temperature and that during gelation, stronger self‐heating effects occurred in the WF‐filled PVC compound. Various characteristics of the real temperature gelation curves of PVC with and without the WF filler were observed and are discussed. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
PVC/PS blends are obtained through a reactive extrusion–polymerization method by the absorption of a solution of styrene monomer, initiator, and a crosslinking agent in commercial suspension‐type porous polyvinyl chloride (PVC) particles, forming a dry‐blend with a relatively high monomer content. These PVC/styrene dry‐blends are reactively polymerized in a twin‐screw extruder in the melt state. They do not contain monomer residues as detected by GC. The transparency, fracture surface morphology, thermal stability, rheology and static and dynamic mechanical properties of these blends are compared to physical PVC/PS blends at similar compositions. Owing to the high polymerization temperature (180°C), short PS chains are formed in the reactive extrusion process. These short chains are dispersed both as a separate phase of ~2 μm particles (recognized by SEM) and also as molecularly dispersed chains enhancing plasticization and compatibilization. The molecularly dispersed short PS chains tend to plasticize the PVC phase, reducing its melt viscosity and glass transition temperature. The content of the short PS chains forming the dispersed separate PS particles is too low for DMTA to detect a separate Tg. Thus, reactively extruded PVC/PS blends exhibit single Tg transitions at lower temperatures compared with the neat PVC. Migration of the PVC's low‐molecular‐weight additives (lubricants and thermal stabilizer) to the PS phase is observed in the physical PVC/PS blends, causing antiplasticization of the PS phase. This results in both reduction of the Tg and an increase in the thermal stability of the PS phase in the physical PVC/PS blends. Comparing TGA thermograms of reactively extruded and physical PVC/PS indicates that the PS formed in the extruder is different from the commercial PS. This can stem from various chemical reactions that can take place in the studied reactive polymerization process. Polym. Eng. Sci. 44:1473–1483, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
廖冬竹  胡欢 《塑料工业》1996,24(6):77-79
本文采用毛细管流变仪对聚氯乙烯电缆料的加工流变性能进行了研究,分析并讨论了影响PVC流变性能的各种因素。结果表明:在试验温度下,增塑PVC的剪切应力均随剪切速率的增加而增大,但当剪切速率增加到一定程度后,剪切速率对剪切应力的影响变小;改性剂PM-1的加入可以大大降低在相同剪切速率下的剪切应力。改性剂PM-1使电缆料的剪切敏感性减小,牛顿性增强。虽然PM-1不能改变临界剪切应力值,但却使当临界剪切应力相应的熔体粘度减小,即临界剪切速率增大,这在实际生产过程中是十分有用的,即可以提高挤出速度而不致于产生熔体破裂。分子量减小,熔体表观粘度明显减小。熔体表观粘度随温度的升高而逐渐减小。  相似文献   

15.
The use of bio‐based polymeric plasticizers could expand the application range of plasticized poly(vinyl chloride) (PVC) materials. In this study, a novel bio‐based polyester plasticizer, poly(glutaric acid‐glyceryl monooleate) (PGAGMO), was synthesized from glutaric acid and glyceryl monooleate via a direct esterification and polycondensation route. The polyester plasticizer was characterized by gel permeation chromatography, 1H‐nuclear magnetic resonance, and Fourier‐transform infrared spectroscopy. The plasticizing effect of PGAGMO on PVC was investigated. The melting behavior, thermal properties, and mechanical properties of PVC blends were studied. The results showed that the PGAGMO could improve the thermal stability and reduce the glass transition temperature of PVC blends; when phthalates were substituted by PGAGMO in PVC blends, the thermal degradation temperature of PVC blends increased from 251.1°C to 262.7°C, the glass transaction temperature decreased from 49.1°C to 40.2°C, the plasticized PVC blends demonstrated good compatibility, and the decrement of the torque and the melt viscosity of PVC blends were conducive to processing. All results demonstrated that the PGAGMO could partially substitute for phthalates as a potential plasticizer of PVC. J. VINYL ADDIT. TECHNOL., 22:514–519, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
The effects of reprocessing by extrusion for up to five cycles, at both the usual (200°C) and an extreme (230°C) temperature, on the structure and mechanical properties of a poly(amino ether) (PAE) resin were studied. A slight darkening and viscosity increase was observed, mainly upon reprocessing at 230°C. The melt flow index and solubility analysis indicated that grafting and crosslinking reactions took place, respectively, after reprocessing at 200 and 230°C. The Young′s modulus and the yield stress of PAE increased slightly with successive extrusion cycles. This was attributed to the viscosity‐induced increase in orientation, and to a minor extent to the partially grafted/crosslinked nature of the samples. The decrease in the ductility was more noticeable in the samples reprocessed at 230°C, and was attributed to the reduced ability to elongate of partially grafted and partially crosslinked structures present after reprocessing, respectively, at 200 and 230°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1368–1373, 2006  相似文献   

17.
Data for viscosity as a function of temperature from 24 to 110°C (75 to 230°F) have been measured for a number of vegetable oils (crambe, rapeseed, corn, soybean, milk-weed, coconut, lesquerella) and eight fatty acids in the range from C9 to C22. The viscosity measurements were performed according to ASTM test methods D 445 and D 446. Several correlations were fitted to the experimental data. Correlation constants for the best fit are presented. The range of temperature in which the correlations are valid is from 24°C (75°F), or the melting point of the substance, to 110°C (230°F). The correlation constants are valuable for designing or evaluating such chemical process equipment as heat exchangers, reactors, distillation columns, mixing vessels and process piping.  相似文献   

18.
ABSTRACT

The melt spinning flow behaviour of a high-density polyethylene (HDPE) blended with a low-density polyethylene (LDPE) was studied using a melt spinning technique in temperature ranging from 160 to 200°C and die extrusion velocity varying from 9 to 36?mm?s?1. The results showed that the melt apparent extension viscosity of the blends was higher than those of the LDPE and HDPE; the melt apparent extension viscosity decreased with increasing temperature; while the melt apparent extension viscosity increased with increasing extension strain rate when the extension strain rate was lower than 0.2?s?1, and then decreased; the melt apparent extension viscosity reached up to a maximum value when extension strain rate was about 0.2?s?1; the relationship between the melt apparent extension viscosity and the LDPE weight fraction did not follow the mixing rule.  相似文献   

19.
Hot melt polyamides exhibit high adhesive strength. The polyamides synthesized from dimer fatty acids and diamines can present low crystallinity and a broad range of melting temperatures. In this work, polyamides with different compositions of dimer fatty acids, piperazine, ethylenediamine, sebacic acid and stearic acid and different content of secondary diamine (piperazine) and primary diamine (ethylenediamine) were synthesized. Polyamides with higher purity of dimer acids showed greater molecular weight, adhesion performance and a better mechanical resistance evaluated in stress/strain test. Softening point increased with increase in monomers content. By differential scanning calorimetry analysis, it was observed that polyamides with low percentage of monomer content show only one narrow melting peak in 100 °C. The increase in the acids monomer content leads to a larger temperature range of melting peak. The use of dimer fatty acid with a low content of monomers (up to 6%) in the polyamides synthesis promotes the formation of hot melt adhesives with good adhesion performances. The lowest monomer content leads to an increase in molecular weight, viscosity and mechanical properties of polyamide. Increase in the content of primary amines in polyamides increases crystallinity, viscosity and mechanical properties due to the higher number of hydrogen bonds formed by amide groups.  相似文献   

20.
The melt flow properties of a low-density polyethylene were measured at test temperatures varying from 140 to 170°C and in a wide range of extrusion rates by means of a capillary rheometer, to identify the influence of extrusion conditions (such as temperature, shear rate, and die diameter) on the melt flow behavior in the present paper. The results showed that the entry pressure drop increased nonlinearly with an increase of the piston speeds, and it decreased with an addition of the die diameter. The melt shear flow obeyed roughly the power law and the melt shear viscosity decreased approximately linearly with an increase of the true shear rates in a bi-logarithmic coordinate system. The dependence of the melt shear viscosity on temperature accorded approximately the Arrhenius expression. Under these experimental conditions, the entrance pressure drop increases as an exponential function with an addition of the channel contraction ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号