首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption of optical radiation by an (incidentally) fluorescent absorbing material was studied in the presence of substantial amounts of scattering. If surface-reflection corrections are neglected, the apparent absorptance of the system is “enhanced” in the presence of scattering. However, in this case attempts to use the Kubelka-Munk turbid-medium theory to compute the results do not lead to an accurate and adequate explanation. If surface-reflection corrections are applied, all observed phenomena can be explained, but a negative enhancement is predicted. A new Saunderson-type correction equation for surface reflection of the diffuse internal transmittance is derived and applied. Fluorescence does not contribute to the phenomena studied since measurements were limited to wavelengths outside the fluorescent emission spectral region.  相似文献   

2.
The recently developed cavity attenuated phase shift particulate matter single scattering albedo (CAPS PMSSA) monitor has been shown to be fairly accurate and robust for real-time aerosol optical properties measurements. The scattering component of the measurement undergoes a truncation error due to the loss of scattered light from the sample tube in both the forward and backward directions. Previous studies estimated the loss of scattered light typically using the Mie theory for spherical particles, assuming particles are present only on the sampling tube centerline, and without accounting for the effects of sampling tube surface reflection. This study overcomes these limitations by solving the radiative transfer equation in an axisymmetric absorbing and scattering medium using the discrete-ordinates method to estimate the scattering truncation error. The effects of absorption coefficient, scattering coefficient, asymmetry parameter of the scattering phase function, and the reflection coefficient at the sampling tube inner surface were investigated. Under typical conditions of CAPS PMSSA operation of low extinction coefficients below about 5000 Mm?1, the scattering loss remains independent of the absorption and scattering coefficients but is dependent on the scattering phase function and the reflection coefficient of the sampling glass tube inner surface. The proposed method was used to investigate the effects of asymmetry parameter and surface reflection coefficient on truncation for absorbing aerosol particles whose scattering phase function can be well represented by the Henyey-Greenstein approximation. The scattering loss increases with increasing the asymmetry parameter and the surface reflection coefficient.

Copyright © 2018 National Research Council Canada  相似文献   

3.
High energy (MeV) and low dose aluminum implants were performed in p-type 6H–SiC at room temperature. The material was characterized by means of Rutherford backscattering in channeling configuration and confocal micro-Raman scattering. Information on the damage-induced changes in the absorption coefficient of the implanted layer can be extracted from the depth profiling of the first-order Raman intensity of the undamaged portion of the sample, using a confocal microprobe set-up. Optical modeling indicates the formation of two layers: an outermost, low absorbing, layer with thickness proportional to the energy of the bombarding ions; and a deeper, more damaged, and absorbing layer.  相似文献   

4.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   

5.
An emitting, absorbing, and anisotropically scattering plain medium containing a suspension of ZnO particles is considered, in which the particles are directly exposed to high-flux irradiation and undergo shrinkage during their endothermic dissociation into Zn(g) and O2 at above 2100 K. The unsteady energy equation that links the rate of radiative heat transfer to the rate of the chemical reaction is formulated and solved numerically by the finite volume technique and the explicit Euler time-integration scheme. The path-length Monte Carlo method is applied for modeling the radiative transfer within the suspension using the absorption/scattering coefficients and the scattering phase function obtained from the Mie theory. It is found that the particle suspension can be heated rapidly from its initial 300 K to over 1800 K in less than 0.1 s, resulting in a more uniform temperature profile as the reaction progresses, particles shrink, and the suspension becomes optically thinner. The chemical conversion increases with decreasing initial particle diameter and volume fraction due to the efficient radiative absorption.  相似文献   

6.
陈国红  周芳灵  赵丽平  段红珍 《化工进展》2015,34(11):3965-3969
铁氧体吸波材料具有吸收频段宽、吸收率高、匹配厚度薄等优点,但由于存在密度大、频带较窄、高温特性差等问题,难以满足吸波材料“薄、轻、宽”的特性,限制了铁氧体吸波材料的应用。本文介绍了吸波材料的吸波机理及铁氧体吸波材料的研究进展,结合近几年铁氧体吸波材料的的发展现状,概述了改善铁氧体吸波材料吸波性能的方法,进而展望了吸波材料的发展前景。总结得出对铁氧体吸波材料进行纳米化、复合化、掺杂及改变形貌,进一步研究和开发出性能优良的吸波材料并将其应用到工业化生产中,是未来制备高性能吸波材料的发展方向。  相似文献   

7.
Prediction of radiative transport through translucent thermal barrier coatings (TBCs) can only be performed if the scattering and absorption coefficients and index of refraction of the TBC are known. To date, very limited information on these coefficients, which depend on both the coating composition and the microstructure, has been available for the very commonly utilized plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) TBCs. In this work, the scattering and absorption coefficients of freestanding plasma-sprayed 8YSZ coatings were determined from room-temperature normal-incidence directional-hemispherical reflectance and transmittance spectra over the wavelength range from 0.8 to 7.5 μm. Spectra were collected over a wide range of coating thickness from 60 to almost 900 μm. From the reflectance and transmittance spectra, the scattering and absorption coefficients as a function of wavelength were obtained by fitting the reflectance and transmittance values predicted by a four flux model to the experimentally measured values at all measured 8YSZ thicknesses. While the combined effects of absorption and scattering were shown in general to exhibit a nonexponential dependence of transmittance on specimen thickness, it was shown that for sufficiently high absorption and optical thickness, an exponential dependence becomes a good approximation. In addition, the implications of the wavelength dependence of the plasma-sprayed 8YSZ scattering and absorption coefficients on (1) obtaining accurate surface-temperature pyrometer measurements and on (2) applying mid-infrared reflectance to monitor TBC delamination are discussed.  相似文献   

8.
9.
Abstract

The delignification response in cooking and the impact of bleaching on earlywood and latewood were studied. Spruce earlywood and latewood chips were pulped by the kraft process and subsequently treated with one bleaching chemical at a time. In cooking, latewood required a higher alkali charge to reach the same kappa number. No difference in the light absorption coefficient between the different fiber types was observed. After oxygen delignification the earlywood fibers had a higher light absorption coefficient at the same kappa number. The difference in light absorbing material was maintained when bleaching was performed with chlorine dioxide, ozone, and peracetic acid. Hydrogen peroxide decreased the light absorbing structures in the earlywood to the same level as for latewood. The earlywood pulp had a higher brightness at a given kappa number than the latewood. The higher brightness remained through all bleaching operations and was primarily due to a higher light scattering ability.  相似文献   

10.

To adequately assess the effects of atmospheric aerosols on climate, their optical constants (scattering and absorption coefficients) must be known. The absorption and scattering coefficients of the aerosols are derived from the real and imaginary parts of the complex refractive index and are dependent on their size and chemical composition. Because aerosol properties vary significantly with location, it is difficult to assign values for the absorption and scattering of solar radiation by aerosols in models of global climate change. This study reports a new method of collecting size-fractionated atmospheric aerosol samples for the purpose of directly measuring their transmission and reflectance spectra followed by the determination of the complex refractive index across the entire atmospherically relevant spectral range. The samples were collected with a modified Sierra high-volume cascade impactor with the usual filter collection surfaces replaced with Teflon sheets machined to hold quartz (ultraviolet [UV]/visible transparent) and/or silver chloride (infrared transparent) sample collection plates. Reflectance and transmission spectra can be obtained on the aerosol samples directly as a function of wavelength, from 280 nm to 2.5 m, with an integrating sphere coupled to an UV/visible or a Fourier transform infrared (FTIR) spectrophotometer. The effective real and imaginary components of the refractive index of the bulk sample material can then be approximated, as a function of wavelength, from the sample spectra. Preliminary results are presented for carbon soot samples generated in the laboratory and for standard diesel soot samples in the UV/visible spectral range. These are compared to results obtained for size-fractionated atmospheric aerosol samples collected near Pasco, WA, West Mesa, AZ, and Argonne, IL.  相似文献   

11.
Absorption and scattering properties of product change as moisture content is reduced, but it has not been investigated how these changes are correlated. This study was aimed to measure and test the feasibility of using optical properties in predicting the moisture content of sliced apple samples during hot air drying. In this investigation, the noninvasive backscattering laser imaging technique at three wavelengths (650, 780, and 880?nm) and Farrell’s diffusion theory were used to determine absorption and reduced scattering coefficients. Artificial neural network model was applied to correlate the optical coefficients and moisture content of samples. The highest correlation between above-mentioned parameters was found at 780?nm. The best moisture content prediction result was obtained when absorption and reduced scattering coefficients were combined at three wavelengths with Rp?=?0.984. The results suggested that this method can be effectively used to predict the moisture content and control the drying process.  相似文献   

12.
吸波材料的微波损耗机理及结构设计   总被引:10,自引:0,他引:10  
就吸波材料与电磁波的相互作用及其损耗机理进行了阐述。通过对吸波材料与电磁波相互作用的研究和不同类型吸波材料微波损耗机理的详细探讨,对研制高宽频、质轻、红外微波隐身兼容复合型吸波材料进行了展望,并提出了材料结构设计的思路。  相似文献   

13.
汽车用新型吸声材料——稻草秸秆板吸声性能的测定   总被引:1,自引:0,他引:1  
研究了用可再生资源稻草秸秆板替代汽车用吸声泡沫塑料。应用L9(34)正交试验研究了稻草秸秆长度、秸秆板密度、热压时间对秸秆板的吸声性能的影响,结果表明秸秆板密度是影响稻草秸秆板吸声系数的主要因素。通过测试发现相同厚度的稻草秸秆板平均吸声系数大于泡沫塑料,当用稻草秸秆板替代XMQ 6608客车原发动机隔声罩内的泡沫塑料时,新罩的降噪效果优于原罩,试验结果证明:轻质稻草秸秆板是能用作汽车吸声材料的。  相似文献   

14.
《Ceramics International》2023,49(4):6368-6377
Nonmagnetic ceramics are ideal microwave absorbing materials used in high-temperature and oxidizing environments. However, low-frequency absorbing properties of this material are rarely reported because low-frequency absorbing requires nonmagnetic materials to have much higher permittivity. In this research, a series of three-dimensional architectures formed by SiC nanowires with different microstructures felt were fabricated to address this issue. The morphology of the SiCnw (linear, bamboo-shaped, and worm-like) dominated by the VLS growth mechanism can be manipulated by the silicon vapor concentration, which is governed by the vaporization temperature of the mixed silicon source (Si and SiO2) in different sintering processes. The spontaneously overlapped bamboo-shaped SiC nanowires in these felt enhance the permittivity and conductivity loss and produce multiple scattering effects on the incident EM waves, thus increasing the low-frequency wave absorption ability. The RLmin of the bamboo-shaped SiCnw felt reaches ?44.3 dB at 3.85 GHz with the corresponding EAB of 0.64 GHz (3.6–4.24 GHz) at a thickness of 3.5 mm. The density of the SiCnw felt is as low as 0.022 g/cm3 due to the high porosity (99.3%) of 3D networks, which fulfills lightweight requirements and highly efficient electromagnetic wave absorption.  相似文献   

15.
Flexible microwave absorbers with high stability are in increasing demand for the applications under harsh conditions. SiC as a functional ceramic material has the feature of high environmental tolerance and adjustable electromagnetic (EM) absorbing properties, making them suitable to be applied for harsh environments. However, the electrical property of SiC requires to be further enhanced to obtain qualified EM absorbing performance. In this work, multiwall carbon nanotubes (CNTs) were introduced to SiC to enhance the electrical properties. Flexible two-dimensional (2D) CNTs loaded SiC fiber mats were prepared as EM absorbers via electrospinning and polymer-derived-ceramic (PDC) methods. The CNTs inside the fibers can form conductive networks and act as reinforcement to ensure high flexibility and enhance the microwave absorption properties of SiC mats. Thus, a reflection loss of ?61 dB and an effective absorption band (EAB) of 2.9 GHz were obtained. More importantly, the EM absorption can be adjusted by tuning the content of CNTs and the EAB can cover the entire X-band by adjusting the material thickness. The work provided a facile strategy to fabricated flexible 2D ceramic mats with high environmental stability and tunable electrical properties, which may shed light on the production of reliable EM absorber for broadband EM absorption applications.  相似文献   

16.
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360°C in a wavelength range from 1.2 μm up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka–Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (<1 cm−1) at wavelengths between 2 μm and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as "edge to shorter wavelengths."]  相似文献   

17.
Aerosols play an important role in global climate change by their interactions with incoming solar radiation and outgoing longwave radiation from the planetary surface. The climate effects of aerosols depend on their scattering and absorption properties. This article describes the development of an instrument (ASTER: Aerosol Scattering To Extinction Ratio) that simultaneously measures the scattering and extinction of single aerosol particles. ASTER uses a high-Q cavity to amplify the extinction signal and innovative optics to collect the scattered light. It can distinguish many partially absorbing particles from a few black ones even if the bulk absorption is the same. Optical sizing and single-scattering albedo measurements were made for laboratory-generated particles with diameters from about 300 nanometers to above one micrometer. Using this prototype instrument, changes in albedo for single particles of 20% or greater were detected by measurement of the scattering and extinction. Optical sizing of the individual particles to within ~ 50 nm was accomplished using the ratio of the forward scattered light to the total scattering. Initial measurements of laboratory air showed a mode of highly absorbing particles. This article reports design and early laboratory tests on ASTER.  相似文献   

18.
TiO2 is not among the traditional electromagnetic (EM) absorbing material candidates owing to its poor response in the EM wave region. Although the EM wave absorption performance can be improved by hybrid and/or hydrogenated TiO2, the difficulty and risk of the experimental process are increased. Herein, rutile TiO2 nanorod was successfully prepared by two-step method. The analysis of dielectric properties exhibits that rutile TiO2 nanorod has excellent charge storage capacity. The results of EM wave absorbing performance show that impedance matching caused by anomalous resonance leads to frequency selective absorption. Such anomalous resonance is due to the resonant polarization of ionic clusters formed by oxygen ions and titanium ions. Moreover, metastructure design shows that the EM absorption frequency and the EM wave absorption bandwidth can be tuned through the design of metamaterial. Our founding will broaden the field of vision for the design of EM wave absorbing materials in the future.  相似文献   

19.
With the aim to design a particular material for low and high frequency cooperative electromagnetic absorption at high temperature, a multiscale design is proposed by combining the microstructure and meta‐structure in one material. The SiCf/Si3N4 composite is prepared via the chemical vapor infiltration technique with SiCf as the EM wave absorbing phase and Si3N4 as the wave‐transparent ceramic matrix. The crossing grooved meta‐structure is designed and fabricated to further improve its absorbing properties and to guarantee its absorbing capacity stability at high temperature. A minimum reflection loss of ?15.3 dB and ?14.8 dB can be reached at 8 and 18 GHz with a total thickness of 5 mm. The temperature‐dependent reflection loss of the designed meta‐structure keeps relative reliable high temperature absorbing performances from room temperature to 500°C. This effective enhanced EM wave absorbing property is believed to be a consequence of multiscale effect induced by combining the traditional EM absorbing materials with metamaterial structure.  相似文献   

20.
高吸油性树脂的研究进展与展望   总被引:1,自引:0,他引:1  
高吸油性树脂是一种新型功能高分子材料。其在吸油机理上与传统的吸油材料完全不同。对高吸油性树脂的吸油原理、热力学与动力学方面的理论研究进行了介绍;对影响树脂合成与性能的聚合单体、交联方式、聚合工艺、温度与时间等都进行了系统的论述;对当前高吸油性树脂在环境保护、工业原料等方面的应用也作了综述。最后展望了高吸油性树脂的发展方向,指出其在理论研究、新技术开发、应用领域拓展这三个方面需要重点关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号