首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
An instrument for combined scanning electron microscopy (SEM) and light microscopy (LM) to which a photometer unit is attached is described. A special stage in the vacuum chamber of a scanning electron microscope incorporates light microscope optics (objective and condenser) designed for transmission and epi-illumination fluorescence LM. An optical bridge connects these optics to a light microscope, without objective and condenser. The possibility of performing quantitative DNA measurements in this combined microscope (the LM/SEM) was tested using preparations of either chicken erythrocytes, human lymphocytes, or mouse liver cells. The cells were fixed, brought on a cover-glass, quantitatively stained for DNA, dehydrated, and critical point dried (CPD). After mounting the cells were coated with gold. The specimens were brought into the vacuum chamber of the combined microscope and individual cells were studied with SEM and LM. Simultaneously DNA measurements were performed by means of the photometer unit attached to the microscope. It is shown in this study that DNA measurements of cells in the combined microscope give similar results when compared to DNA measurements of embedded cells performed with a conventional fluorescence microscope. Furthermore, it is shown that although the gold layer covering the LM/SEM specimens weakens the fluorescence signal, it does not interfere with the DNA measurements.  相似文献   

2.
A scanning electron microscope of ultra-high-vacuum (UHV-SEM) with a field emission gun (FEG) is operated at the primary electron energies of from 100 eV to 3 keV. The instrument can form the images that contain information on surface chemical composition, chemical bonding state (electronic structure), and surface crystal structure in a microscopic resolution of several hundred angstroms (Å) using the techniques of scanning Auger electron microscope, scanning electron energy loss microscope, and scanning low-energy electron diffraction (LEED) microscope. A scanning tunneling microscope (STM) also has been combined with the SEM in order to obtain the atomic resolution for the solid surface. The instrumentation and examples of their applications are presented both for scanning LEED microscopy and STM.  相似文献   

3.
A method for bacterial identification has been developed by means of studying the same histological sections through several types of microscopy. With this method, one section was processed and analyzed respectively for light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Sections of gingival biopsies were Gram stained and bacteria tentatively identified by LM. Photographs of the sections were taken and presketched transparent acetate sheets (PTAS) were made from the photos. The same section was later prepared for SEM, areas previously thought to contain bacteria were localized by placing the PTAS onto the SEM monitoring screen. The SEM specimens were subsequently processed for TEM, bacteria were located, and micrographs obtained. The results showed that out of ten diseased gingival biopsies observed under the LM, bacteria were found to be present in all the specimens and were identified as both Gram positive and Gram negative. By transferring the section from LM to SEM, the bacteria could be relocated and their morphotype (cocci, rods, etc.) clearly identified in most of the cases. Since cocci may resemble other biological granular structures under SEM, they require further analysis under TEM for additional positive identification. This study demonstrated that the method described here is a useful tool for assessing the presence and identifying bacteria within the gingival tissues.  相似文献   

4.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

5.
The purposes of this study were to evaluate in vitro the influence of different frequencies of Er:YAG laser on the human dentin caries removal capacity. Thirty fragments obtained from third molars were randomly assigned into three groups (n = 10) according to the laser frequency used: 4, 6, and 10 Hz. The caries lesion (±1 mm deep) was induced before the irradiation by S.mutans cultures for 6 weeks. The specimens of all groups were irradiated with 200 mJ of energy in noncontact and focused mode under constant refrigeration (water flow: 2.5 mL/min). Quantitative analysis of the caries removal was performed by DIAGNOdentTM and the Axion VisionTM software. Qualitative analysis was performed by Scanning electron microscope (SEM) and light microscope (LM). Data were analyzed by ANOVA and Fishers' tests. The DIAGNOdentTM revealed that the caries removal was similar with 4 and 6 Hz and was superior with 10 Hz (P < 0.05). The analysis with Axion VisionTM software revealed that the caries removal was similar with 6 and 10 Hz and the 4 Hz group promoted the lowest caries removal. Through SEM morphologic analysis, some specimens irradiated with 4 Hz presented, under the demineralized dentin, a disorganized collagenous matrix. The LM images revealed that all frequencies used promoted irregular caries removal, being observed over preparations with 6 and 10 Hz. It can be concluded that the increase of Er:YAG laser frequency provided a higher dentin caries removal without selectivity to the disorganized dentin. Microsc. Res. Tech., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The difficulties of handling small specimens of less than 1 mm3 are considerably reduced when the specimens are placed in a small container designed to be compatible with the dimensions of the preparatory instrumentation and of the microscope. The container described is unaffected by solvents used in the preparation of specimens for scanning electron microscopy.  相似文献   

7.
A device has been built that allows four air-sensitive specimens to be examined in a Philips 501 scanning electron microscope (SEM) without interrupting the vacuum. The specimens are mounted onto a revolving four-faceted stage in an inert atmosphere. The sealed device is then mounted onto the goniometer substage of the SEM and interfaced with the stage rotation drive. After the microscope reaches the operating vacuum condition, the device is opened by turning the stage rotation knob. The device can be viewed with the SEM image during this operation. The same mechanism which opens and closes the device also rotates the four-faceted sample mount to the desired specimen. The x and y translations of the SEM sub-stage are used to move the specimen in the imaging plane. The operation of this device was tested with polyolefin catalysts which are extremely air-sensitive. The main advantage of this device is that it allows air-sensitive specimens to be routinely examined without compromising the other uses of the SEM. Specimens mounted on this device can be viewed from 0 to ± 90° tilt. With a minor adaption, this device can be used to view the total 360° surface of a specimen in a manner similar to that described by Herrmann (1979).  相似文献   

8.
Thin paraffin sections, mounted on scanning specimen holders previously coated with polyester film tape (Minnesota Mining and MFG Co., Scotch film tape No. 850 gold), were processed for light microscopy (LM) in the conventional way, then covered with celloxin shellac and examined in the LM by using the upper illuminating source. After removal of the shellac from the surface of the sample by immersion in acetone, the sections were air-dried, coated with a copper layer in a vacuum evaporator and examined in a scanning electron microscope (SEM). The method allows: (i) high-quality LM possibilities for establishment of the diagnosis in pathological cases; (ii) SEM examination of the same area as observed in LM; and (iii) EPMA measurements of insoluble precipitates embedded in the tissue. The usefulness of the proposed method is obvious in cases where the composition of a precipitate on LM scale is to be compared with the LM appearance of the surrounding tissue.  相似文献   

9.
Two simple techniques are described and illustrated. The first is for the study of one specimen by both light microscopy (LM) and scanning electron microscopy (SEM). The second is for the study of one selected specimen by LM, SEM and in ultrathin section by transmission electron microscopy (TEM). Although these techniques were developed for the comparative study of Precambrian organic walled microfossils (OWMs), they could be used for a wide range of other specimens.  相似文献   

10.
Light-microscope slides (3 in. × 1 in.) bearing Gram smears of Erysipelothrix rhusiopathiæ, or Staphylococcus aureus, after preliminary examination under the light-optical microscope (LM), were cut down in size, glued onto specimen stubs, coated with gold and examined in the scanning electron microscope (SEM). These preparations served as a control for investigations into bacteria-cell junctions in tissue. Cover-slips from stained sections of staphylococcal or swine erysipelas endocarditis mounted on 3 in. × 1 in. microscope slides (which had been intensively studied previously with conventional light microscopy) were floated off by immersing the slides in xylol. After dehydration of the tissues on the slides, the preparations were treated similarly to the Gram smears, and were examined with the SEM. Lesions of endocarditis were thus examined, and the information gained from these preliminary examinations shed new light on the pathogenesis of the disease. This information had not previously been available by any other technique. Because of this, and in view of the simplicity of preparing sections for scanning electron microscopy, it is suggested that the SEM might be a useful tool to be applied to routine histological sections.  相似文献   

11.
Common methods for the preparation of cultured cells for concurrent light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are not completely satisfactory. This article describes how we grow mammalian cells on plastic disks made from Aclar film. Aclar is a transparent fluorinated-chlorinated thermoplastic that contains no volatile components and is, for all practical purposes, chemically inert. Cells adhere to it readily and remain attached after fixation, dehydration, and critical-point drying or embedding. The film also accepts heavy metal coating by ionic bombardment and is extremely stable in the vacuum of the SEM. LM observations are unhindered by Aclar, since the film is as transparent as glass. Fluorescence microscopy is possible with this film, since it exhibits no detectable autofluorescence. During SEM observation, the film has great dimensional stability, and the cells and heavy metal coating remain attached to the Aclar even under high-resolution operating conditions. TEM processing of specimens grown on Aclar is simplified by the fact that Aclar does not stick to the epoxy resins used in EM. Furthermore, Aclar is easily sectioned and does not damage knives used in ultramicrotomy. The use of Aclar film considerably simplifies the preparation of cultured cells for all types of microscopy. This method is particularly useful in correlating surface features between SEM and TEM observations.  相似文献   

12.
A low-temperature freeze-drying or freezing preparation chamber and specimen stage has been designed and constructed for use with an electron microscope. The system allows biological specimens to be prepared under conditions of temperature and pressure and their subsequent direct transfer to a cold stage maintained at — 175°C within the microscope. Attachment of both the chamber and stage is a simple procedure and does not interfere with the normal electrical and mechanical operation of the microscope. The stage is cooled with the aid of a liquid nitrogen reservoir system and can be maintained at — 175°C for about 80 min without the use of any continuous cooling system. Test specimens have shown that a resolution of about 1.0–1.5 nm can be maintained at — 175°C for 80 min once thermal equilibrium has been established.  相似文献   

13.
The stretch zone width (SZW) data for 15‐5PH steel CTOD specimens fractured at ?150°C to + 23°C temperature were measured based on focused images and 3D maps obtained by extended depth‐of‐field reconstruction from light microscopy (LM) image stacks. This LM‐based method, with a larger lateral resolution, seems to be as effective for quantitative analysis of SZW as scanning electron microscopy (SEM) or confocal scanning laser microscopy (CSLM), permitting to clearly identify stretch zone boundaries. Despite the worst sharpness of focused images, a robust linear correlation was established to fracture toughness (KC) and SZW data for the 15‐5PH steel tested specimens, measured at their center region. The method is an alternative to evaluate the boundaries of stretched zones, at a lower cost of implementation and training, since topographic data from elevation maps can be associated with reconstructed image, which summarizes the original contrast and brightness information. Finally, the extended depth‐of‐field method is presented here as a valuable tool for failure analysis, as a cheaper alternative to investigate rough surfaces or fracture, compared to scanning electron or confocal light microscopes. Microsc. Res. Tech. 75:1155–1158, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
This study was undertaken with the aim of identifying the different cell types found in human bone marrow by examining their surface morphology. In an attempt to obtain a homogeneous cell population, cells were both fractionated by discontinuous albumin density gradient centrifugation (DADGC) and selectively grown in nutrient agar. Both cell preparations underwent the critical point drying technique before examination under both the scanning electron microscope (SEM) and subsequently the light microscope (LM). When the SEM image of individual cells was compared with the corresponding LM image, it was not easy to identify the different cell types, because of the shrinkage and distortion that occurred during their preparation. The shrinkage observed under the SEM amounted to a 45% reduction in mean cell diameter. This shrinkage was confirmed by comparing the SEM and LM images of the same cell. Although shrinkage occurred throughout the dehydration sequence, critical point drying was responsible for a 25% reduction in mean cell diameter. Furthermore, direct observation under LM of fixed cells drying in air from ethanol, revealed visible contraction of the cell and distortion of the cell membrane. We assume that a similar morphological change occurred during critical point drying. We conclude that the shrinkage and distortion, caused by the dehydration process involved in SEM preparation, severely limit the value of a study of surface morphology by SEM in the identification of the different cell types found in human bone marrow.  相似文献   

15.
In this study 12 species of Cyperaceae have been studied for quantitative and qualitative observation of pollen grains through Light and scanning electron microscopy. Pollens of 12 species of Cyperaceae from different wetlands of Azad Jammu and Kashmir were collected. Morphological characters of pollen grains were then investigated under the Light and Scanning electron microscope. Two pollen types have been observed apolar and heteropolar. Shape of pollens was prolate (4 spp), sub‐spheroidal (7 spp), and oblate (1 spp). Variation observed in exine sculpturing granular (4 spp), reticulate (1 spp), areolate‐punctate (3 spp), and psilate (2 spp). Polar to equatorial ratio and fertility percentage of the pollens were also studied. Based on these micromorphlogical characters of pollens taxonomic keys have been made for the accurate identification of the members of Cyperaceae. The characteristics studied in present research work are very much valuable taxonomically and phytochemically for the identification of species of family Cyperaceae. Light microscope (LM) and Scanning electron microscope (SEM) were used for pollen observation, which play vital role in the taxonomical identification of species and provide sufficient information for taxonomist.  相似文献   

16.
In problems of air or water pollution, or in evaluation of exposure to pathogenic dusts from biological specimens ( e.g., asbestos fibers) some typical particles can be used as tracers. As far as they have sufficiently typical properties (shape, color, anisotropy,…) particles are rapidly recognized and quantified by light microscopy (LM), even if they are very scarce or dispersed among large amounts of unsignificant ones. For accurate characterization, analytical electron microscopy (scanning or transmission) is required, but cannot be efficiently applied for low concentrations of particles. A technique using a high precision object-marker under LM has been developed in the past by Jedwab (1975) to be used with SEM, but there is actually no equivalent for TEM. Such a technique is proposed in this paper. Its major interest resides in the greater amount of analytical data available for one single particle (high magnification morphology, crystallographic structure, chemistry). Practical results were obtained with asbestos fibers and bodies recovered from biological specimens, but the technique can be extended to many other problems concerning micron-sized particles.  相似文献   

17.
Khursheed A  Karuppiah N  Koh SH 《Scanning》2001,23(3):204-210
A compact add-on objective lens for the scanning electron microscope (SEM) has been designed and tested. The lens is < 35 mm high and can be fitted on to the specimen stage as an easy-to-use attachment. Initial results show that it typically improves the spatial resolution of the SEM by a factor of three. The add-on unit is based upon a permanent magnet immersion lens design. Apart from the extra attachment to the specimen stage, the SEM with the add-on lens functions in the normal way. The in-lens unit can comfortably accommodate specimen heights up to 10 mm. The new add-on lens unit opens up the possibility of operating existing SEMs in the high-resolution in-lens mode. By using a deflector at the top of the add-on lens unit, it can also operate as a quantitative multichannel voltage contrast spectrometer, capable of recording the energy spectrum of the emitted secondary electrons. Initial experiments confirm that a significant amount of voltage contrast can be obtained.  相似文献   

18.
Accurate spatial measurements in a scanning electron microscope (SEM) require calibration of the magnification as a function of working distance and microscope operating conditions. This work presents the results of the calibration of an environmental SEM for the accurate spatial measurement of dimensions and areas in experiments, both for the measurement of strain in steel specimens under applied loads and the measurement of dimensional changes in timber with changes in relative humidity.  相似文献   

19.
A laser powered heating stage designed for application in high vacuum environment of a scanning electron microscope (SEM) is presented. It was developed to observe and characterize microstructural changes in crystalline materials at elevated temperatures up to 1000 degrees C. The approach utilizes the power output of a commercial infrared diode laser in order to heat up specimens without interference with the electronic system of the SEM. The heating stage can be used in combination with any standard characterization technique applicable for SEMs--electron backscatter diffraction, orientation contrast imaging, x-ray energy dispersive spectrometry, etc. The results of test measurements are presented.  相似文献   

20.
An extensive study was performed in finish turning of the following microalloyed steels: as received (14.3 HRc), water-cooled (44.9 HRc), air-cooled (14.41 HRc) and furnace-cooled (9.1 HRc). The turning tests were carried out using multi-layer coated cemented carbide tools at four different cutting speeds (60, 90, 120, and 150 m/min) while feedrate and depth of cut were kept constant at 0.1 mm/rev and 1 mm, respectively. The influences of workpiece microstructure and cutting speed on cutting forces and workpiece surface roughness were investigated. The worn parts of the cutting tools were also examined under a scanning electron microscope (SEM). The results showed that cutting speed significantly affected the machined surface roughness values. However, cutting forces were not influenced significantly by workpiece microstructure and cutting speed except for water cooled specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号