共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of in situ photodeposited ferric ion onto TiO2 surface on the degradation of alachlor was investigated in the presence of the UV radiation. The photodegradation rate of alachlor could be described as an apparent first order. The rate constant (K(a)) of alachlor increased from 0.021 to 0.060 h(-1) as the number of coating times increased from 1- to 5-times in the absence of ferric ion, where the corresponding thicknesses of the TiO2 film were 67 and 174 nm. The rate constant (K(a)) increased from 0.030 to 0.060 h(-1) as pH value decreasd from pH 9 to 5 in the presence of only TiO2 immobilised with 5-times of coating. The rate constant increased slightly from 0.031 to 0.050 h(-1) as the concentration of ferric ion increased from 0.75 to 7.5 mg Fe3+ l(-1) in the absence of TiO2. However, those increased from 0.051 to 0.110 h(-1) in the presence of both TiO2 and ferric ion. In situ photodeposition of ferric ion onto the TiO2 surface enhanced the rate constant of photodegradation of alachlor by about 80% with an adding 7.5 mgFe3+ l(-1). During the alachlor photodegradation, three kinds of non-toxic organic compounds derived from alachlor were detected in 1 h. 相似文献
2.
An analysis of the photodegradation of TNT in a TiO2 slurry reactor is presented. The rates and extent of TNT transformation and mineralization are compared for photocatalytic and direct photolytic reactions under conditions of varying light energies and in the presence and absence of oxygen. Certain initial organic transformation products are identified for both photocatalytic and photolytic reactions. Nitrate, nitrite, and ammonium ions are analyzed and the possibility of semiconductor sensitization by colored compounds is considered. TNT was transformed rapidly under each set of photochemical conditions but destruction was faster and more complete with TiO2 photocatalysis. Transformation by-products were destroyed readily under oxygenated photocatalytic conditions and were observed to be more refractory under direct photolytic conditions. Mass balances performed on carbon and nitrogen revealed that when the TiO2 photocatalyst was utilized in the presence of oxygen and near u.v. radiation (λ > 340 nm) approx. 90% of the TNT was mineralized and 35% of the total nitrogen was recovered as ammonium ion after 120 min. Among the large number of organic transformation products produced photocatalytically, trinitrobenzoic acid, trinitrobenzene and trinitrophenol have been identified as oxidative intermediate species and dinitroaniline as a reduction product. The photocatalytic transformation of TNT appears to involve both oxidative and reductive steps and sensitization by colored compounds plays no detectable role in degradation. 相似文献
3.
Direct photolysis and solar TiO2 photocatalysis of Trimethoprim (TMP) in different water matrices (demineralised and simulated seawater) have been studied. Direct photolysis yielded a similar, slow TMP degradation rate in both water matrices, and the formation of very stable photo-transformation products. Dissolved organic carbon decreased slightly after prolonged irradiation. The main intermediate identified was a ketone derivative (trimethoxybenzoylpyrimidine), which was proved to be a photosensitizer of TMP degradation. During TiO2 photocatalysis, TMP was completely eliminated in both water matrices at a similar rate, however, the mineralization rate was appreciably reduced in seawater, which can be explained by the presence of inorganic species acting as hydroxyl radical scavengers, and directly affecting photocatalytic efficiency. Identification of intermediates showed differences between the two processes but hydroxylation, demethylation and cleavage of the original drug molecule were observed in both. 相似文献
4.
Photocatalytic degradation (PCD) of several aqueous pollutants was investigated using a porous silica-coated titanium dioxide (SiO(2)-TiO(2)) photocatalyst. Several cationic, neutral and anionic pollutants were tested. The results indicate that modifying the surface properties of TiO(2) using silica significantly enhances the PCD rate of the cationic pollutants. The rate enhancement decreased with an increase in substrate concentration, especially for the quaternary amines, and was attributed to the decrease in initial adsorption. However, no significant rate-increase resulted for acetate and phenol. Results suggest that the increased presence of cationic pollutants at the catalyst surface caused the rate enhancement. 相似文献
5.
Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO2 and iron oxide immobilized on functionalized polyvinyl fluoride films (PVFf-TiO2-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (<0.2 mg L−1) was observed. Phenol was efficiently degraded and mineralized at operational pH < 5 and nalidixic acid degradation was complete even at pH 7, but mineralization stopped at 35%. Pesticide mixture was slowly degraded (50%) after 150 min of irradiation. Degradation of the emergent contaminant mixture was successful for eight compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates.PVFf-TiO2-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVFf-TiO2-Fe oxide, some iron leaching led to enlargement of the TiO2 surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation. 相似文献
6.
Gautham Jegadeesan Souhail R. Al-Abed Vijayakumar Sundaram Kirk G. Scheckel 《Water research》2010,44(3):965-1198
Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and crystalline nanoparticles were prepared using sol-gel synthesis techniques. For amorphous TiO2, solute pH in the range of 4-9 had a profound impact on only As (V) sorption. As (III) and As (V) sorption isotherms indicated that sorption capacities of the different TiO2 polymorphs were dependent on the sorption site density, surface area (particle size) and crystalline structure. When normalized to surface area, As (III) surface coverage on the TiO2 surface remained almost constant for particles between 5 and 20 nm. However, As (V) surface coverage increased with the degree of crystallinity. X-ray absorption spectroscopic analysis provided evidence of partial As (III) oxidation on amorphous TiO2 rather than crystalline TiO2. The data also indicated that As (III) and As (V) form binuclear bidentate inner-sphere complexes with amorphous TiO2 at neutral pH. 相似文献
7.
This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H2O2 is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 °C and atmospheric pressure, with 100 mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H2O2 aqueous solution was continuously fed during 4 h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H2O2 and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H2O2 continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H2O2 consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe2+, H2O2 and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H2O2 and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view. 相似文献
8.
While the photocatalytic degradation of various volatile organic compounds in conjunction with UV light has been widely reported, visible-light-induced photocatalytic degradation of low-levels of the pollutants MTBE and TCE, which have been linked to potential adverse health effects, is rarely reported. The present study examined whether visible-light-activated S- or N-doped TiO2 photocatalytic technology can be used to control indoor concentrations of MTBE and TCE. This study consists of the characterization of the doped TiO2 powders, as well as an investigation of their photocatalytic activities. In regards to both powders, a shift of the absorbance spectrum towards the visible light region was observed. An activity test suggested that these photocatalysts exhibited reasonably high degradation efficiencies towards MTBE and TCE under visible light irradiation. The degradation efficiencies of MTBE and TCE by S- and N-doped photocatalysts exceeded 75 and 80%, respectively, at input concentrations (IC) of 0.1 ppm. Degradation efficiency was dependent on both IC and relative humidity. TCE could enhance the degradation efficiency of MTBE even under visible-light irradiation. The estimated mineralization efficiencies (MEs) were comparable to those of previous studies conducted with UV/TiO2 systems. Similar to the relative degradation efficiencies, the ME of TCE was higher in comparison to that of MTBE. The CO production measured during the photocatalytic processes represented a negligible addition to indoor CO levels. These results suggest that visible-light-activated S- and N-doped TiO2 photocatalysts may prove a useful tool in the effort to improve indoor air quality. 相似文献
9.
A new ruthenium(II) photosensitizer, [Ru(II)(py-pzH)(3)](2+) (where py-pzH=3-(2'-pyridyl)pyrazole), has been synthesized. The complex displayed outstanding excited state redox properties (estimated Ru(III)/Ru(II)* approximately -1.24 V vs. NHE) and was expected to sensitize the injection of electrons into the conduction band of anatase TiO(2) upon visible irradiation. The photosensitizer was anchored onto the surface of anatase TiO(2) particles via in situ silylation. The silyl-linkage displayed excellent stability in both aqueous media, over a wide pH range, and in common organic solvents. The resultant material, TiO(2)-[Ru(II)(py-pz-Si identical with )(3)], was found to be able to mediate degradation of CCl(4) in neutral aqueous medium under broad band visible irradiation (lambda>450 nm). The relation between the rate of degradation and concentration of substrate was explored and the mechanism of the photodegradation of the perhalogenated organic was discussed. 相似文献
10.
Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H(2)O(2) process 总被引:1,自引:0,他引:1
The objective of this study was to elucidate the degradation pathways of dimethylsulfoxide (DMSO) during its mineralization caused by UV/H(2)O(2) treatment. In order to accomplish this, we measured the concentration time-profiles of DMSO and its degradation intermediates during the UV/H(2)O(2) treatment. In addition, we proposed a kinetic model that could account for the degradation pathways of DMSO during its UV/H(2)O(2) treatment. The results show that the degradation of DMSO by the UV/H(2)O(2) treatment can be classified into two major pathways, and this is supported by both the analysis of the intermediates and total organic carbon (TOC) measurements. Firstly, DMSO was degraded into sulfate (SO(4)(2-)) through the formation of methansulfinate (CH(3)SO(2)(-)) and methansulfonate (CH(3)SO(3)(-)) as sulfur-containing intermediates. One of the two carbon constituents of DMSO was highly resistant to mineralization, due to the formation of methansulfonate, which reacted very slowly with (.-)OH k = 0.8 x 10(7) M(-1)s(-1)). Secondly, the other carbon constituent of DMSO was relatively easily mineralized through the formation of formaldehyde (HCHO) and formate (HCO(2)(-)) as non-sulfur-containing intermediates. The kinetic model proposed in this study for the degradation of DMSO by (.-)OH in the UV/H(2)O(2) process was able to successfully predict the patterns of concentration time-profiles of all components during the UV/H(2)O(2) treatment of DMSO. 相似文献
11.
This study evaluated the effectiveness of nanocrystalline titanium dioxide (TiO(2)) in removing arsenate [As(V)] and arsenite [As(III)] and in photocatalytic oxidation of As(III). Batch adsorption and oxidation experiments were conducted with TiO(2) suspensions prepared in a 0.04 M NaCl solution and in a challenge water containing the competing anions phosphate, silicate, and carbonate. The removal of As(V) and As(III) reached equilibrium within 4h and the adsorption kinetics were described by a pseudo-second-order equation. The TiO(2) was effective for As(V) removal at pH<8 and showed a maximum removal for As(III) at pH of about 7.5 in the challenge water. The adsorption capacity of the TiO(2) for As(V) and As(III) was much higher than fumed TiO(2) (Degussa P25) and granular ferric oxide. More than 0.5 mmol/g of As(V) and As(III) was adsorbed by the TiO(2) at an equilibrium arsenic concentration of 0.6mM. The presence of the competing anions had a moderate effect on the adsorption capacities of the TiO(2) for As(III) and As(V) in a neutral pH range. In the presence of sunlight and dissolved oxygen, As(III) (26.7 microM or 2mg/L) was completely converted to As(V) in a 0.2g/L TiO(2) suspension through photocatalytic oxidation within 25 min. The nanocrystalline TiO(2) is an effective adsorbent for As(V) and As(III) and an efficient photocatalyst. 相似文献
12.
Application of nano TiO(2) towards polluted water treatment combined with electro-photochemical method 总被引:11,自引:0,他引:11
A novel composite reactor was prepared and studied towards the degradation of organic pollutants in this work. In the reactor, a UV lamp was installed to provide energy to excite nano TiO(2), which served as photocatalyst, leading to the production of hole-electron pairs, and a three-electrode electrolysis system was used to accumulate H(2)O(2) which played an important role in the degradation process. The reactor was evaluated by the degradation process of rhodamine 6G (R-6G), and the data obtained in the experiments showed that the combination of the photochemical and electrochemical system raised the degradation rate of R-6G greatly; the working mechanism of the reactor was also discussed in the article. The prepared reactor was also utilized to treat polluted water from dyeing and printing process. After continuous treatment for 0.5h, chemical oxygen demand biochemical oxygen demand, quantity of bacteria and ammonia nitrogen of the polluted water were reduced by 93.9%, 87.6%, 99.9% and 67.5%, respectively, which indicated that the method used here could be used for effective organic dyes degradation. 相似文献
13.
Cong Li Naiyun Gao Li Wang Yonggang Shen 《The International journal of environmental studies》2013,70(4):625-634
Aqueous solutions of atrazine (ATZ, 2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) were photolysed (λ = 254 nm) by low pressure UV/H2O2 process (LP/UV/H2O2) under a variety of parameters including hydrogen peroxide, the initial concentration of ATZ, pH, and humic acid. The results show that the most favourable reaction condition appears to be a moderate concentration of H2O2 from 100 mg/L to 120 mg/L. The presence of humic acid in the solution has a negative impact on the LP/UV/H2O2 treatment because of scavenging effects. Ninety percent of ATZ is destroyed in one hour under the optimum conditions. In this study, LP/UV/ H2O2 treatment of ATZ yielded several organic by products which are identified, including DIA, DEA, OHDIA, OHDEA, DAA and OAAT. They are quantified over the range of treatment tested and the ATZ degradation scheme is proposed combined with by products information. 相似文献
14.
The scope of this study is the assessment of the efficiency of solar disinfection by heterogeneous photocatalysis with sol-gel immobilized (titanium dioxide) TiO2 films over glass cylinders. The solar disinfection process known as SODIS was considered as a reference. Spring water naturally polluted with coliform bacteria was exposed to sunlight in plastic bottles with and without TiO2 over simple solar collectors and the disinfection effectiveness was measured. Total and fecal coliforms quantification was performed by means of the chromogenic substrate method in order to obtain the efficiency of each disinfection treatment. The disinfection with TiO2 was more efficient than the SODIS process, inactivating total coliforms as well as fecal coliforms. On a sunny day (more than 1000 W m(-2) irradiance), it took the disinfection with immobilized TiO2 15 min of irradiation to inactivate the fecal coliforms to make them undetectable. For inactivation of total coliforms, 30 min was required, so that in less than half the time it takes SODIS, the treated water complies with the microbial standards for drinking water in Mexico. Another important part of this study has been to determine the bacterial regrowth in water after the disinfection processes were tested. After SODIS, bacterial regrowth of coliforms was observed. In contrast, when using the TiO2 catalyst, coliforms regrowth was not detected, neither for total nor for fecal coliforms. The disinfection process using TiO2 kept treated water free of coliforms at least for seven days after sun irradiation. This demonstration opens the possibility of application of this simple method in rural areas of developing countries. 相似文献
15.
Inactivation of MS-2 bacteriophage in a TiO2 photoelectrocatalytic system was evaluated, wherein TiO2 particles were coated onto an indium tin oxide (ITO) electrode and an electrical potential was applied under black light blue (BLB) irradiation. MS-2 phage inactivation was greatly enhanced by anodic potential, whereas cathodic potential completely inhibited inactivation. Experiments performed with radical scavengers showed that inactivation was primarily caused by hydroxyl radicals, both in the bulk phase and on the TiO2 surface. Application of positive potential to the electrode was found to result in two distinct beneficial effects: (i) electrostatic attraction between the negatively charged viral capsid and catalyst surface, causing improved usage of surface-bound hydroxyl radical, in comparison to conventional TiO2 photocatalytic disinfection; and (ii) higher reactive oxygen species production. Results also suggest that inactivation of various microorganisms including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis spores and Cryptosporidium parvum oocyst was enhanced via positive potential induction to TiO2. 相似文献
16.
Wang J Zhang G Zhang Z Zhang X Zhao G Wen F Pan Z Li Y Zhang P Kang P 《Water research》2006,40(11):2143-2150
To use solar irradiation or interior lighting efficiently, a new photocatalyst with high catalytic activity in visible light was sought. In this work, an upconversion luminescence agent, 40 CdF(2).60 BaF(2).1.0 Er(2)O(3), was synthesized and its fluorescent spectrum was determined. It is found that this upconversion luminescence agent can emit five upconversion fluorescent peaks below 387nm under the excitation of 488nm visible light. The upconversion luminescence agent has revealed an improvement over ordinary titanium dioxide (TiO(2)) in photocatalytic activity under visible light irradiation for the photocatalytic degradation of ethyl violet in aqueous solution as a model compound. The TiO(2) photocatalyst doped with upconversion luminescence agent was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The photocatalytic degradation of ethyl violet was tracked by UV-vis and (1)H-NMR spectra, and the influences of irradiation time, initial concentration of ethyl violet, addition amount of TiO(2) catalyst and initial pH value were also investigated. To affirm the complete mineralization, the total organic carbon (TOC) was also tested. The degradation rate of ethyl violet in the presence of doped rutile TiO(2) photocatalyst reached 87.08% at 4.0h visible light irradiation, which was obviously higher than the corresponding degradation rate (35.42%) in the presence of undoped rutile TiO(2) powder. The research results show that the upconversion luminescence agent is necessary to transform visible lights into ultraviolet lights and thus make the best use of visible lights. By calculation, the upconversion efficiency of the emission peak at 380nm was estimated to be about 0.78%. The TiO(2) powder doped upconversion luminescence agent under visible light irradiation is able to decompose the ethyl violet in aqueous solution efficiently, therefore, this method may be envisaged as a technology for treating dyes wastewaters using solar energy, especially at textile industries in developing countries. 相似文献
17.
Bi2WO6 displayed great photolytic degradation efficiency to bisphenol A (BPA) under simulated solar light irradiation but its reaction mechanism and the impacts of coexisting substances on the degradation remain unclear. In present study, the reaction mechanism was investigated using DMPO spin-trapping ESR spectra and experiments with scavengers of hydroxyl radicals (OH) and holes. The results supported that hole oxidation mainly governed the photodegradation process. As a common humic substance in natural water, humic acid accelerated the degradation of BPA when its concentration was 1 mg/L, while the photodegradation was impeded with the increase of humic acid concentration in the range of 5-20 mg/L. Almost all anions, including NO3−, HCO3−, Cl−, SO42− inhibited the degradation of BPA by Bi2WO6 and their inhibition effects followed the order of SO42− > Cl− > HCO3− > NO3−. Cations of Na+, K+, Ca2+ and Mg2+ displayed slight suppressing effect on BPA degradation mainly due to the impact of Cl− coexisting in the solution. However, Cu2+ hindered the BPA photodegradation heavily. Fe3+ and H2O2 affected the photodegradation in a complicated way: they suppressed or promoted the photodegradation depending on their concentrations. This could be the result of competition between photolyitc hole generated by Bi2WO6 and OH produced by Fe3+ or H2O2. 相似文献
18.
Photocatalytic oxidation by TiO2 has been shown to deactivate biological pollutants. Most previous studies evaluated TiO2's antimicrobial performance using bacteria, with Escherichia coli most commonly applied as the test microbe. There have not been concentrated studies focusing on the photocatalytic disinfection of fungi which widely exist in buildings and cause health problems. In this study, the antifungal activity of TiO2 photocatalytic reaction against Aspergillus niger was investigated for moist wood boards during periods of several weeks. TiO2 coated film in the presence of UVA (365 nm) irradiation exhibited antifungal capability. No visible growth was observed on specimens during the photo-process. Re-growth appeared in subsequent dark, indicating that the photocatalytic reaction was not sufficient for total disinfection against mold fungi but did suppress fungi growth. The study sheds light on conditions and potential applications of photocatalytic deactivation of fungi. 相似文献
19.
I. Michael 《Water research》2010,44(18):5450-5462
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe2+/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe2+ and H2O2 were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe2+ and H2O2 concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO2 process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. 相似文献