首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spectrometer-grade CdTe single crystals with resistivities higher than 109 Ω cm have been grown by the modified Bridgman method using zone-refined precursor materials (Cd and Te) under a Cd overpressure. The grown CdTe crystals had good charge-transport properties (μτ e = 2 × 10−3 cm2 V−1, μτ h = 8 × 10−5 cm2 V−1) and significantly reduced Te precipitates compared with crystals grown without Cd overpressure. The crystal growth conditions for the Bridgman system were optimized by computer modeling and simulation, using modified MASTRAPP program, and applied to crystal diameters of 14 mm (0.55′′), 38 mm (1.5′′), and 76 mm (3′′). Details of the CdTe crystal growth operation, structural, electrical, and optical characterization measurements, detector fabrication, and testing using 241Am (60 keV) and 137Cs (662 keV) sources are presented.  相似文献   

2.
Cd1−xZnxTe (CZT) crystals grown from a modified vertical Bridgman technique were characterized by means of an optical polarized transmission technique using the Pockels effect, low-temperature direct current (DC) photo-conductivity technique, low-temperature photoluminescence (PL) spectroscopy, room-temperature PL mapping technique, and detector performance measurements. Electric field mapping indicates that an approximation of a uniform electric field distribution approximation is generally satisfied for CZT detectors operated at room temperature under typical working conditions. A nonuniform electric field distribution is observed under intense infrared (IR) light illumination, and a model is proposed based on charge generation of defects, trapping, and space-charge effects. The largest hole mobility-lifetime product (μτ)h of the CZT detector measured by DC photoconductivity is 7.0 × 10−4 cm2/V. The detector treated with 2% bromine in methanol chemical etch has a relatively small surface recombination velocity at room temperature, which was obtained from DC photocurrent and detector performance tests, as measured by irradiation of 5.5-MeV α particles and 59.6-keV γ-rays, respectively. We have clearly shown the equivalence of charge collection efficiency results measured by both DC photocurrent and α particle response. Low-temperature DC photocurrent measurements show that surface recombination velocity increases significantly with decreasing temperature from 300 K to 250 K. The effective electron mobility-lifetime product—combination effects of bulk and surface of CZT crystal—increases with increment of temperature. Room-temperature PL mapping measurements indicate uniformity of zinc concentration within CZT crystals. Low-temperature PL spectroscopy shows that the dominant emission peaks are excitons, which are bound to either shallow neutral donors (D0, X) or neutral acceptors (A0, X), depending on the temperature, concentration of donors and acceptors, and the incident light intensity. It was found that the luminescence of (D0, X) depends linearly on the incident laser intensity, while (A0, X) has a nonlinear dependence.  相似文献   

3.
Cd1−xZnxTe (CZT) is an emerging material for room-temperature x-ray and gamma-ray detectors. The identification and control of point defects and charge compensators in the bulk material are currently important issues. We have used photoluminescence (PL), photoluminescence excitation, and electron paramagnetic resonance (EPR) to characterize point defects in a series of bulk CZT crystals grown by the high-pressure Bridgman technique. Luminescence peaks due to shallow donors, shallow acceptors, and deeper levels, such as VCd-DCd complexes (D = shallow donor), were monitored. This was followed by a detailed study of photo-induced EPR, using a tunable Ti:sapphire laser. There were no EPR signals in the “light off” condition; however, during illumination, an isotropic EPR spectrum due to neutral donors could be observed. The dependence of the donor g value on zinc molar fraction, x, has been determined for the range 0.07<x<0.14. We show that PL and EPR can be combined to give increased quantitative defect analysis in CZT. With resonant tuning of the Ti:sapphire laser, we detected donor concentrations as low as mid-1014cm−3 in detector-grade CZT crystals.  相似文献   

4.
In order to deal with the phenomena of Cd evaporation from the raw materials and the heterogeneity caused by the larger-than-unity segregation coefficient of Zn in CdTe during the conventional vertical Bridgman method (VBM) growth of Cd1-xZnxTe (CZT), two modifications—Cd compensation and accelerated crucible rotation technique (ACRT)—are simultaneously adopted to the VBM. By a combination of VBM with the two modifications, several CZT ingots with the dimensions of ∼60×150 mm2 are grown. Structural, optical, and electrical characterization of the as-grown CZT crystals reveals that the application of Cd compensation and ACRT is of obvious efficiency in improving concentration homogeneity, reducing defect density, raising crystal quality and, therefore, upgrading the optoelectronic properties of CZT crystals. Nuclear spectra measurements of detectors fabricated from the as-grown crystals also indicate that both modifications can upgrade the detecting performance of CZT.  相似文献   

5.
Measurements of the 55Fe-isotope emission spectra and the photosensitivity of CdTe detectors with a Schottky diode, and also the temperature dependence of the resistivity of a CdTe crystal ((2–3) × 109 Ωcm at 300 K) have been used to determine the concentration of uncompensated donors (1–3) × 1012 cm−3. Similar measurements performed for Cd0.9Zn0.1Te crystals with the resistivity (3–5) × 1010 Ω cm at 300 K have shown that the concentration of uncompensated donors in this case is lower by approximately four orders of magnitude. The results of calculations show that, due to such a significant decrease in the concentration of uncompensated donors, the efficiency of X- and γ-ray radiation detection in the photon energy range 59 to 662 keV can decrease by one-three orders of magnitude (depending on the photon energy and the lifetime of charge carriers in the space-charge region). The results obtained account for the apparent poor detecting properties of the Cd0.9Zn0.1Te detectors.  相似文献   

6.
Cadmium zinc telluride (Cd1−x ZnxTe or CZT) has shown great promise as a material for room temperature x-ray and gamma-ray detectors. In particular, polycrystalline material grown by the high pressure Bridgman method with nominal Zn fraction (x) from 0.1 to 0.2 has been used to fabricate high resolution gamma-ray spectrometers with resolution approaching that of cooled high-purity Ge. For increased sensitivity, large areas (> 1 cm2) are required, and for good sensitivity to high energy gamma photons, thick detectors (on the order of 1 cm) are required. Thus, there has been a push for the development of CZT detectors with a volume greater than 1 cm3. However, nonuniformities in the material over this scale degrade the performance of the detectors. Variations in the zinc fraction, and thus the bandgap, and changes in the impurity distributions, both of which arise from the selective segregation of elements during crystal growth, result in spectral distortions. In this work, several materials characterization techniques were combined with detector evaluations to determine the materials properties limiting detector performance. Materials measurements were performed on detectors found to have differing performance. Measurements conducted include infrared transmission, particle induced x-ray emission, photoluminescence, and triaxial x-ray diffraction. To varying degrees, these measurements reveal that “poor-performance” detectors exhibit higher nonuniformities than “spectrometer-grade” detectors. This is reasonable, as regions of CZT material with different properties will give different localized spectral responses, which combine to result in a degraded spectrum for the total device.  相似文献   

7.
Sandia National Laboratories (SNL) is leading an effort to evaluate vertical high pressure Bridgman (VHPB) Cd1−xZnxTe (CZT) crystals grown in the former Soviet Union (FSU) (Ukraine and Russia), in order to study the parameters limiting the crystal quality and the radiation detector performance. The stoichiometry of the CZT crystals, with 0.04<x<0.25, has been determined by methods such as proton-induced x-ray emission (PIXE), x-ray diffraction (XRD), microprobe analysis and laser ablation ICP mass spectroscopy (LA-ICP/MS). Other methods such as triaxial double crystal x-ray diffraction (TADXRD), infrared transmission spectroscopy (IR), atomic force microscopy (AFM), thermoelectric emission spectroscopy (TEES) and laser induced transient charge technique (TCT) were also used to evaluate the material properties. We have measured the zinc distribution in a CZT ingot along the axial direction and also its homogeneity. The (Cd+Zn)/Te average ratio measured on the Ukraine crystals was 1.2, compared to the ratio of 0.9–1.06 on the Russian ingots. The IR transmission showed highly decorated grain boundaries with precipitates and hollow bubbles. Microprobe elemental analysis and LA-ICP/MS showed carbon precipitates in the CZT bulk and carbon deposits along grain boundaries. The higher concentration of impurities and the imperfect crystallinity lead to shorter electron and hole lifetimes in the range of 0.5–2 and 0.1 μs, respectively, compared to 3–20 and 1–7 μs measured on U.S. spectrometer grade CZT detectors. These results are consistent with the lower resistivity and worse crystalline perfection of these crystals, compared to U.S.-grown CZT. However, recently grown CZT from FSU exhibited better detector performance and good response to alpha particles.  相似文献   

8.
We examined the effects of polishing and etching on the structural and electrical properties of various high pressure Bridgman Cd1−xZnxTe (CZT) crystals using high resolution x-ray diffraction (HRXRD) and alpha particle mapping. Two etching solutions investigated are: (1) standard bromine-methanol solution, and (2) standard solution mixed with lactic acid. HRXRD, and in particular, triple axis x-ray diffraction (TAXRD) showed the effectiveness of the bromine-methanol etch in removing residual strain and damage from the CZT crystal. TAXRD mapping of a ∼5 cm2 CZT crystal after etching resulted in a reduction of the average rocking curve full width at half maximum to 15 arc-sec (compared to 23 arc-sec for the “as-received”). Alpha particle mapping of the electron risetime and the pulse height spectrum, along with leakage current measurements, showed varying effects of the different etching solutions on the surface properties (and hence their influence on the electrical and detector properties). These preliminary results show the importance and the sensitivity of the overall detector properties on the surface preparation conditions of CZT crystals used as radiation detectors.  相似文献   

9.
A series of n-type, indium-doped Hg1−xCdxTe (x∼0.225) layers were grown on Cd0.96Zn0.04Te(311)B substrates by molecular beam epitaxy (MBE). The Cd0.96Zn0.04Te(311)B substrates (2 cm × 3 cm) were prepared in this laboratory by the horizontal Bridgman method using double-zone-refined 6N source materials. The Hg1−xCdxTe(311)B epitaxial films were examined by optical microscopy, defect etching, and Hall measurements. Preliminary results indicate that the n-type Hg1−xCdxTe(311)B and Hg1−xCdxTe(211)B films (x ∼ 0.225) grown by MBE have comparable morphological, structural, and electrical quality, with the best 77 K Hall mobility being 112,000 cm2/V·sec at carrier concentration of 1.9×10+15 cm−3.  相似文献   

10.
Effects of excess tellurium on the properties of CdZnTe radiation detectors   总被引:2,自引:0,他引:2  
Room-temperature radiation detectors have been fabricated on high-resistivity, indium-doped Cd0.90Zn0.10Te crystals grown under different amounts of excess Te. The effects of the excess Te on the properties of the detectors are explained by a simple model using only three parameters: the density of Cd vacancies, the density of Te antisites (Te at Cd sites), and the deep level of doubly ionized Te antisites. The best detectors, which can resolve the low-energy Np-L and Te-K peaks as well as Cd and Te escape peaks of 241Am, are produced from crystals grown with 1.5% excess Te. The detectors fabricated from crystals grown without excess Te are unable to resolve any characteristic-radiation peaks of 241Am and 57Co. This result is explained by a model of networked p-type domains in an n-type matrix or vice versa, which is caused by the lack of sufficient deep-level Te antisites. Such conduction-type inhomogeneity causes massive electron and hole trapping. As for the detectors fabricated from Cd0.90Zn0.10Te crystals grown with 2% and 3% excess Te, they are able to resolve the 241Am 59.5-keV, 57Co 122-keV, and 57Co 136-keV radiation peaks. However, the full-width at half-maximum (FWHM) values of these peaks are broadened, especially the high-energy 57Co peaks. These phenomena are attributed to the hole and, possibly, electron trapping by Cd vacancies and Te antisites, respectively. The result of the analysis indicates that sufficient Te antisites and a low density of carrier traps in Cd0.90Zn0.10Te are essential for producing high-quality radiation detectors. In the analysis, it was discovered that most of the excess Te, on the order of 1–2 × 1020 cm−3, remain electrically inactive. A possible explanation for this phenomenon is that the excess Te atoms form neutral Te-antisite and Cd-vacancy complexes, such as TeCd·(VCd)2, during the post-growth cooling process.  相似文献   

11.
This work focuses on the evaluation of the spectroscopic performance of n-type CdZnTe gamma-ray spectrometers, grown by a modified horizontal Bridgman Technique developed at IMARAD Imaging Systems Ltd. Two types of devices are studied: (i) detector arrays grown and produced by IMARAD and employing ohmic indium contacts and (ii) detectors and arrays fabricated at Technion in crystals provided by IMARAD, employing different types of contacts. Alpha particle spectroscopy as well as gamma-ray spectroscopy is used to evaluate and characterize the energy resolution of gamma-ray spectrometers fabricated on n-type CdZnTe grown by a modified horizontal Bridgman and doped with indium. The electron and hole mobility lifetime products of the n-type CdZnTe material grown by IMARAD are estimated by measuring the dependence of charge collection efficiency upon the bias voltage, using a calibrated multichannel analyzer. The measured results indicate that the average electron and hole mobility-lifetime products are, respectively, of the order of μnτn=(1–2)·10−3 cm2/V and μpτp=6·10−6 cm2/V. The measured energy resolution of 122 keV photons is −(5–6)% when the source is not collimated and is reduced to −4.5% when the source is collimated. These results are obtained with ohmic cathode as well as with a rectifying cathode. A statistical model for the calculation of the pulse height spectra as a function of photon energy, electron and hole mobility-lifetime products and applied electric field, which has been recently reported in Applied Physical Letters, is used to determine the role of incomplete charge collection in the spectral performance of the n-type CdZnTe spectrometers. The comparison between the measured and modeled results indicates that the dark noise, cross talk and non-uniformity are the main limiting factors of the spectral performance of the n-type spectrometers rather than incomplete charge collection. The good spectroscopic performance of the arrays under study is attributed to an adequate hole mobility lifetime for the geometry of the pixilated arrays. The study indicates that the n-type CdZnTe spectrometers are useful for a wide range of imaging applications.  相似文献   

12.
The current response of a TlBr detector to 137Cs γ-ray radiation has been studied in the dose-rate range 0.033–3.84 Gy/min and within the voltage range 1–300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1–10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V c determine the dependence of the current response on the voltage in the high electric fields. The parameters of the carriers’ transport μτ are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 × 10−4 and 6.4 × 10−5 cm2V−1, respectively. The value of μτ is in the range (4–9) × 10−5 cm2V−1 for crystals doped with a divalent cation.  相似文献   

13.
The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on large-diameter (140 mm), SI Cd1−xZnxTe (x=0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (≥1cm3) with electron mobility-lifetime product (μτe) in the (3–7) × 10−3 cm2/V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.  相似文献   

14.
We have studied the minority-carrier lifetime on intentionally indium-doped (211)B molecular beam epitaxially grown Hg1-xCdxTe epilayers down to 80K with x ≈ 23.0% ± 2.0%. Measured lifetimes were explained by an Auger-limited band-to-band recombination process in this material even in the extrinsic temperature region. Layers show excellent electron mobilities as high as ≈2 x 105 cm2v-1s-1 at low temperatures. When the layers are compensated with Hg vacancies, results show that the Schockley-Read recombination process becomes important in addition to the band-to-band processes. From the values of τn0 and τp0 of one sample, the obtained defect level is acceptor-like and is somewhat related to the Hg vacancies.  相似文献   

15.
The charge collection efficiency of CdZnTe radiation detectors with two different configurations: aSchottky diode detector and aresistive detector are compared. The average charge collection efficiencies for three different directions of irradiation (negative electrode, positive electrode and perpendicular to the electric field) are calculated. The mobility-lifetime product of the CdZnTe substrates is evaluated from the dependence of the measured spectra upon detector bias voltage. The measurement of the average charge collection efficiency is based on monitoring the shift of the peak channel with bias voltage in an experimental setup which is well calibrated. Two types of radiation are used:gamma photons from several radioactive sources andalpha particles from an241Am source. The models for the evaluation of mobility-lifetime product from the measured data for the two types of detector configurations as well as for the two types of radiation sources, are compared and discussed. The CdZnTe (Zn = 10%) substrates under study are obtained commercially and are grown by the high pressure Bridgeman method. The mobility-lifetime products and specific resistivity of the two types of detectors are evaluated and compared. A lower resistivity material has a narrower depletion region and behaves like a thinner detector thus exhibiting better collection efficiencies. Therefore, medium resistivity material which is completely inadequate for resistive detectors can still yield high performance Schottky detectors. The preferred direction of irradiation, i.e. from the negative electrode, is possible only in the case of n-type material which is reverse biased by negative voltages applied to the Schottky gate. The mobility-lifetime products that are derived on both the resistive detector (with specific resistivity of ≈1.1010 ω.cm) and the Schottky diode (with specific resistivity of ≈1.106 Ω.cm) are μnτn ≈-4.10−4 cm2V−1 and μpτp≅ 8.10−5 cm2V−1.  相似文献   

16.
Three indicators (T1000, T5000, and T1000/T5000) are used to appraise the infrared (IR) transmission spectra for Cd1−xZnxTe (CZT) slices. By comparing the values of these three indicators, four typical types of IR spectra are characterized for CZT crystals. The CZT crystals possessing the four types of IR spectra are different in microstructures, especially the densities and sizes of Te precipitates, the free carrier concentrations, and the resistivities. Mechanisms for the elimination of tiny and dense Te precipitates are given by analyzing the variation of the IR transmittance in the range of 500–5000 cm−1 during the annealing process.  相似文献   

17.
Growth characteristics of (100) Cd1−xZnxTe (CZT) have been studied using metalorganic vapor phase epitaxy. CZT layers were grown on (100) GaAs substrates using diisopropylzinc (DiPZn), dimethylcadmiun (DMCd), and diethyltelluride (DETe) as precursors. Growths were carried out in the temperature range from 375 to 450°C. Since DiPZn has lower vapor pressure than DMCd, CZT layers with Zn composition below 0.06 were grown with good compositional control. Layers with uniform Zn composition and thickness over an area of 10 × 15 mm2 were grown. Enhancement of CZT growth rate was observed when a small amount of DiPZn is introduced under fixed flows of DMCd and DETe. Zn composition increases abruptly for further increase of DiPZn flow rate, where growth rate decreases. Growth mechanisms for the above growth conditions were also discussed.  相似文献   

18.
The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level (EDD)dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by EDD of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges.  相似文献   

19.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   

20.
The influence of gg irradiation (60Co) of various intensities (P γ≈1.7−7.5kGR/h) on the photoluminescence of GaAs:Te single crystals [n 0=(1.2–2.3×1018 cm−3] is investigated. Together with the known photoluminescence impurity bands ( max≈1.2 eV and/or max≈1.35 eV) and edge band ( max≈1.51 eV), new bands are also observed in the spectra at max≈1.3 eV and max≈1.48 eV. The observed effects are attributed to radiation-stimulated ordering of the donor impurity and deep impurity centers. Fiz. Tekh. Poluprovodn. 32, 38–39 (January 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号