首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transimpedance amplifier array for 12 parallel optical-fiber channels each operating at 10 Gb/s is presented, which is used in the receiver of short-distance links. It stands out for the following features: high gain (transimpedance 25 k/spl Omega/ in the limiting mode), high input sensitivity and wide input dynamic range (input current swing from 20 to 240 /spl mu/A/sub p-p/), constant output voltage swing (differential 0.5 V/sub p-p/ at 50 /spl Omega/ load), and low power consumption (1.4 W) at a single supply voltage (5 V). Each channel has its own offset-current control circuit. To the best of the authors' knowledge, the total throughput of 12/spl times/10 Gb/s=120 Gb/s is the highest value reported for a single-chip amplifier array. The target specifications have been achieved with the first technological run without needing any redesign. This fact demonstrates that the inherent severe crosstalk problems of such high-gain amplifier arrays can reliably be solved by applying adequate decoupling measures and simulation tools.  相似文献   

2.
A high-gain, 43-Gb/s InP HBT transimpedance-limiting amplifier (TIALA) with 100-/spl mu/A/sub pp/ sensitivity and 6 mA/sub pp/ input overload current is presented. The circuit also operates as a limiting amplifier with 40-dB differential gain, better than 15-dB input return loss, and a record-breaking sensitivity of 8 mV/sub pp/ at 43 Gb/s. It features a differential TIA stage with inductive noise suppression in the feedback network and consumes less than 450mW from a single 3.3-V supply. The TIALA has 6-k/spl Omega/ (76dB/spl Omega/) differential transimpedance gain and 35-GHz bandwidth and comprises the transimpedance and limiting gain functions, an auto-zero dc feedback circuit, signal level monitor, and slicing level adjust functions. Other important features include 45-dB isolation and 800-mV/sub pp/ differential output.  相似文献   

3.
A monolithic integrated high-gain limiting amplifier for future optical-fiber receivers is described. It is characterized by the following features: high insertion-voltage gain (maximum 54 dB); high input dynamic range (about 52 dB) at constant output-voltage swing (400 mV/SUB p-p/); high operating speed (up to at least 4 Gb/s); low power dissipation (350 mW at 50-/spl Omega/ load); standard supply voltage (5 V); 50-/spl Omega/ output buffer; one-chip solution; and small fabrication costs by use of a 2-/spl mu/m standard bipolar technology without needing polysilicon self-aligning processes. The good values of operating speed and power consumption, which the authors believe has until now not nearly been achieved by other comparable bipolar amplifier ICs, are a result of careful circuit design and optimization. The amplifier was extended to a high-sensitivity (amplitude and time) decision circuit operating at up to 4.0 Gb/s by adding a high-speed master-slave D-flip-flop IC fabricated with the same technology.  相似文献   

4.
An integrated fully differential CMOS transimpedance amplifier (TIA) with buried double junction photodiode input is described. The TIA features a variable high transimpedance gain (250 k/spl Omega/ to 2.5 M/spl Omega/), large DC photocurrent rejection capability (>55 dB) and low input referred noise density at 100 kHz (2pA//spl radic/Hz).  相似文献   

5.
In this paper, an optoelectronic receiver IC for CD, DVD, and Blue-Laser optical data storage applications is presented. The IC was developed in a 0.5-/spl mu/m BiCMOS technology with integrated PIN photodiodes. It includes a new architecture of high-speed and low-noise variable gain transimpedance amplifiers witch current preamplifier input. The amplifier transimpedance gain is programmable over a gain range of 130 /spl Omega/ to 270 k/spl Omega/ by a serial interface. The amplifier small-signal bandwidth is 260 MHz for the highest gain, which gives a gain-bandwidth product of 70 THz/spl Omega/ and a sensitivity improvement by a factor of 2 compared to published OEICs. The amplifiers support a special write/clip mode which realizes a nonlinear gain reduction for high input signals. The output voltage buffers are 130-/spl Omega/ impedance matched for optimized data transmission over a flex cable. The impedance is generated by active-impedance synthesis to increase the output dynamic range.  相似文献   

6.
High-gain and high-bandwidth transimpedance amplifiers (TIAs) are required for fiber-optic receiver modules. This paper reports on the design, fabrication, and characterization of a 40-Gb/s TIA for SONET/SDH STS-768/STM-256 applications based on an InP-InGaAs single heterojunction bipolar transistor (SHBT) process developed at Vitesse Semiconductor Corporation (Vitesse Indium Phosphide Release 1 or VIP-1). This amplifier consists of a single-ended input transimpedance pre-amplifier and a differential output post-amplifier. The measured differential transimpedance is 1800 /spl Omega/ with -3-dB bandwidth greater than 40 GHz. The high gain of this circuit eliminates the need for a standalone limiting amplifier between the conventional transimpedance pre-amplifier and the demultiplexer in short-reach applications.  相似文献   

7.
A monolithic integrated transimpedance amplifier for the receiver in a 40-Gb/s optical-fiber TDM system has been fabricated in an InP-based HBT technology. Despite its high gain (transimpedance of 2 kΩ in the limiting mode, 10 kΩ in the linear mode) the complete amplifier was realized on a single chip. Clear output eye diagrams were measured up to 43 Gb/s under realistic driving conditions. The voltage swing of 0.6 Vpp at the differential 50 Ω output does not change within the demanded input dynamic range of 6 dB. At the upper input current level even 48 Gb/s were achieved. The power consumption is approximately 600 mW at a single supply voltage of -5.5 V  相似文献   

8.
10Gb/s 0.18μm CMOS光接收机前端放大电路   总被引:2,自引:0,他引:2  
金杰  冯军  王志功 《光通信技术》2003,27(12):44-46
介绍了利用TSMC 0.18μm CMON工艺设计的应用于SDH STM-64速率级(10Gb/s)光接收机前端放大电路。该电路由前置放大器和作为主放大器的限幅放大器构成,其中前置放大器采用RGC形式的互阻放大器实现,限幅放大器采用改进的Cherry—Hooper结构。模拟结果表明该电路可以工作在10Gb/s速率上。  相似文献   

9.
A complementary metal-oxide-semiconductor (CMOS) monolithically integrated photoreceiver is presented. The circuit was fabricated in a 130-nm unmodified CMOS process flow on 2-/spl mu/m-thick silicon-on-insulator substrates. The receiver operated at 8 Gb/s with 2-dBm average input optical power and a bit error rate of less than 10/sup -9/. The integrated lateral p-i-n photodetector was simultaneously realized with the amplifier and had a responsivity of 0.07 A/W at 850 nm. The measured receiver sensitivities at 5, 3.125, 2, and 1 Gb/s, were -10.9, -15.4, -16.5, and -19 dBm, respectively. A 3-V single-supply operation was possible at bit rates up to 3.125 Gb/s. The transimpedance gain of the receivers was in the range 53.4-31 dB/spl Omega/. The circuit dissipated total power between 10 mW and 35 mW, depending on the design.  相似文献   

10.
A single-chip ultra-high gain distributed amplifier (DA) was developed using commercial GaAs PHEMT foundry for 40-Gb/s base band applications. Two seven-section DAs are directly coupled using a lumped dc level-shift circuit. The dc bias level of the second-stage DA can be tuned using the level-shift circuit for optimum gain. The gain of each DA stage has been optimized using a novel active feedback cascode topology, which allows the gain bandwidth product to be maximized while avoiding instability problems. The fabricated single-chip DA with a size of 2.1 mm /spl times/ 2.3 mm showed a high gain of 28 dB, and an average noise figure of 4.6 dB with a 41 GHz bandwidth. The corresponding transimpedance gain was 62 dB/spl Omega/ and the input noise current density was 14.5 pA//spl radic/Hz. The gain bandwidth product (GBWP) is 1030 GHz, which corresponds to the highest performance using GaAs technology for 40 Gb/s applications.  相似文献   

11.
A detailed study on the performance analysis and optimum design of an integrated front-end PIN/HBT photoreceiver for fiber-optic communication is presented. Receiver circuits with two different transimpedance amplifiers-a single-stage common emitter (CE) amplifier and a three-stage amplifier comprising a CE amplifier and two emitter followers (EFs), are analyzed assuming a standard load of 50 /spl Omega/. A technique to include the transit-time effect of a PIN photodetector on the overall receiver circuit analysis is introduced and discussed. Gain-bandwidth product (GB) and gain-bandwidth-sensitivity measure product (GBS) are obtained as functions of feedback resistance (R/sub F/) and various device parameters. Hence, some optimum designs are suggested using a photodetector of area 100 /spl mu/m/sup 2/ and with a feedback resistance of 500 /spl Omega/. The bandwidth plays a major role in determining the optimum designs for maximum GB and maximum GBS. A bandwidth >8 GHz has been obtained for the photoreceiver even with a single-stage CE amplifier. The optimum design for a receiver with a three-stage amplifier shows a bandwidth of 35 GHz which is suitable for receivers operating well beyond 40 Gb/s; however, in this case, the gain is reduced. The performance of different fixed square-emitter structures are investigated to choose the optimum designs corresponding to different gains. Very low power dissipation has been estimated for the optimized devices. The noise performance of the devices with optimum designs was calculated in terms of the minimum detectable optical power for a fixed bit-error rate of 10/sup -9/. The present design indicates that GB and noise performance can be improved by using an optimum device design.  相似文献   

12.
InP and SiGe technologies are both attractive for design of circuits operating at 40 GB/s and beyond. In this paper, we describe a fully differential SiGe transimpedance amplifier (TIA) suitable for differential phase-shift keying applications. The TIA exhibits 49 dB-/spl Omega/ transimpedance, greater than 50-GHz bandwidth, and input-referred current noise less than 30 pA//spl radic/Hz. For comparison, we have also developed a similar TIA in an InP double-heterostructure bipolar transistor technology. The InP TIA had 48 dB-/spl Omega/ transimpedance and 49-GHz bandwidth.  相似文献   

13.
A low-power high gain-bandwidth monolithic cascode transimpedance amplifier using novel InP/GaAsSb/InP DHBT technology was investigated. The amplifier exhibited state-of-the-art performance of 17.3 dB gain, 12 GHz bandwidth, 55 dB/spl Omega/ transimpedance, and a corresponding gain-bandwidth of 6.7 THz/spl Omega/ while consuming only 12.2 mW DC power. It also achieved good gain-bandwidth-product per DC power figure-of-merit (GBP/P/sub dc/) of 7.2 GHz/mW  相似文献   

14.
Modulator driver and photoreceiver for 20 Gb/s optic-fiber links   总被引:1,自引:0,他引:1  
Two integrated circuits, a modulator driver and a photoreceiver integrating a metal-semiconductor-metal (MSM) photodetector, a differential transimpedance amplifier and two limiting amplifier stages for high-speed optical-fiber links are presented. The IC's were manufactured in a 0.2 μm gate-length AlGaAs-GaAs high-electron mobility transistor (HEMT) technology with a fT of 60 GHz. The modulator driver IC operates up to 25 Gb/s with an output voltage swing of 3.3 Vp-p at each output. The 1.3-1.55 μm wavelength monolithically integrated photoreceiver optoelectronic integrated circuit (OEIC) has a bandwidth of 17 GHz with a high transimpedance gain of 12 kΩ. Eye diagrams are demonstrated at 20 Gb/s with an output voltage of 1 Vp.p  相似文献   

15.
Product designs for 40-Gb/s applications fabricated from SiGe BiCMOS technologies are now becoming available. In this paper we first briefly discuss heterojunction bipolar transistor (HBT) device operation at high speed, demonstrating that perceived concerns regarding lower BV/sub CEO/ and higher current densities required to operate silicon HBTs at such high speeds do not in actuality limit design or performance. The high-speed portions of the 40-Gb/s system are then addressed individually. We demonstrate the digital capability through a 4: 1 multiplexer and a 1 : 4 demultiplexer running over 50 Gb/s error free at a -3.3-V power supply. We also demonstrate a range of analog elements, including a lumped limiting amplifier which operates with a 35-GHz bandwidth, a transimpedance amplifier with 220-/spl Omega/ gain and 49.1-GHz bandwidth, a 21.5-GHz voltage-controlled oscillator with over -100-dBc/Hz phase noise at 1-MHz offset, and a modulator driver which runs a voltage swing twice the BV/sub CEO/ of the high-speed SiGe HBT. These parts demonstrate substantial results toward product offerings, on each of the critical high-speed elements of the 40-Gb/s system.  相似文献   

16.
A 1-Gb/s differential transimpedance amplifier (TIA) is realized in a 0.25-/spl mu/m standard CMOS technology, incorporating the regulated cascode input configuration. The TIA chip is then integrated with a p-i-n photodiode on an oxidized phosphorous-silicon (OPS) substrate by employing the multichip-on-oxide (MCO) technology. The MCO TIA demonstrates 80-dB/spl Omega/ transimpedance gain, 670-MHz bandwidth for 1-pF photodiode capacitance, 0.54-/spl mu/A average input noise current, -17-dBm sensitivity for 10/sup -12/ bit-error rate (BER), and 27-mW power dissipation from a single 2.5-V supply. It also shows negligible switching noise effect from an embedded VCO on the OPS substrate. Furthermore, a four-channel MCO TIA array is implemented for optical interconnects, resulting in less than -40-dB crosstalk between adjacent channels.  相似文献   

17.
Return-to-zero differential phase-shift keying applications require a differential amplifier with high bandwidth, high gain, low noise, and good input impedance match. In this paper, we describe an InGaAs-InP heterostructure bipolar transistor differential transimpedance amplifier with high bandwidth of 47 GHz and high gain of 56 dB-/spl Omega/. The input-referred current noise is less than 35 pA//spl radic/Hz over the measurement range up to 40 GHz.  相似文献   

18.
This brief presents a bandwidth enhancement technique that is applicable to gigahertz-range broadband circuits. Using the inductance enhancement technique proposed in this brief, a 2.5-Gb/s transimpedance amplifier (TIA) has been implemented based on a 0.35-/spl mu/m CMOS technology. With the input noise reduction, the TIA with the proposed active inductor loads improves the overall system performances including more that 90% increase in bandwidth. Measurements show the bandwidth of 1.73 GHz, transimpedance gain of 68 dB/spl Omega/, and the averaged input referred noise current of 3.3 pA//spl radic/Hz, respectively, while dissipating 50 mW of dc power.  相似文献   

19.
The design and performance of an InGaAs/InP transimpedance amplifier and post amplifier for 40 Gb/s receiver applications are presented. We fabricated the 40 Gb/s transimpedance amplifier and post amplifier using InGaAs/InP heterojunction bipolar transistor (HBT) technology. The developed InGaAs/InP HBTs show a cut‐off frequency (fT) of 129 GHz and a maximum oscillation frequency (fmax) of 175 GHz. The developed transimpedance amplifier provides a bandwidth of 33.5 GHz and a gain of 40.1 dBΩ. A 40 Gb/s data clean eye with 146 mV amplitude of the transimpedance amplifier module is achieved. The fabricated post amplifier demonstrates a very wide bandwidth of 36 GHz and a gain of 20.2 dB. The post‐amplifier module was fabricated using a Teflon PCB substrate and shows a good eye opening and an output voltage swing above 520 mV.  相似文献   

20.
This paper describes the design of a transimpedance amplifier (TIA) for a low-power, short-distance, high-density fiber-optic interconnect communication system. The single-ended circuit has been designed in an 80-nm digital CMOS process and consumes only 2.2 mW from a 1-V supply. The measured results show a transimpedance gain of 52 dB/spl Omega/ and a large bandwidth of 20 GHz. This work presents the highest bandwidth at the lowest power consumption for CMOS transimpedance amplifiers reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号