首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Pulsed Neutron Interrogation Test Assembly (PUNITA) is an experimental device for research in NDA methods and field applicable instrumentation for nuclear safeguards and security applications. PUNITA incorporates a standard 14-MeV (D-T) pulsed neutron generator inside a large graphite mantle. The generator target is surrounded by a thick tungsten filter with the purpose to increase the neutron output and to tailor the neutron energy spectrum. In this configuration a sample may be exposed to a relatively high average thermal neutron flux of about (2.2±0.1)×103 s−1 cm−2 at only 10% of the maximum target neutron emission. The sample cavity is large enough to allow variation of the experimental setup including the fissile sample, neutron and gamma detectors, and shielding materials.The response from SNM samples of different fissile material content was investigated with various field-applicable scintillation gamma detectors such as the 3×2 in. LaBr3 detector. Shielding in the form of tungsten and cadmium was applied to the detector to improve the signal to background ratio. Gamma and neutron shields surrounding the samples were also tested for the purpose of simulating clandestine conduct. The energy spectra of delayed gamma rays were recorded in the range 100 keV-9 MeV. In addition time spectra of delayed gamma rays in the range 3.3-8 MeV were recorded in the time period of 10 ms-120 s after the 14-MeV neutron burst. The goal of the experiment was to optimize the sample/detector configuration including the energy range and time period for SNM detection. The results show, for example, that a 170 g sample of depleted uranium can be detected with the given setup in less than 3 min of investigation. Samples of higher enrichment or higher mass are detected in much shorter time.  相似文献   

3.
Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers.The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO4) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 108 cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself.In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials.The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9 MV Bremsstrahlung spectrum above the photofission “threshold” of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds.The current status of the system and experimental results will be shown and discussed.  相似文献   

4.
The Peking University Neutron Imaging Facility (PKUNIFTY) is a Radio Frequency Quadruple (RFQ) accelerator based system. The fast neutrons are produced by 2 MeV deuterons bombarding beryllium target. The moderator, reflector, shielding and collimator have been optimized with Monte-Carlo simulation to improve the neutron beam quality. The neutrons are thermalized in water cylinder of Φ26×26 cm2 with a polyethylene disk in front of Be target. The size of deuteron beam spot is optimized considering both the thermal neutron distribution and the demand of target cooling. The shielding is a combination of 8 cm thick lead and 42 cm thick boron doped polyethylene. The thermal neutrons are extracted through a rectangular inner collimator and a divergent outer collimator. The thermal neutron beam axis is perpendicular to the D+ beam line in order to reduce the fast neutron and the γ ray components in the imaging beam. When the neutron yield is 3×1012 n/s and the L/D is 50, the thermal neutron flux is 5×105 n/cm2/s at the imaging plane, the Cd ratio is 1.63 and the n/γ ratio is 1.6×1010 n/cm2/Sv.  相似文献   

5.
The response of large deuterated liquid scintillators (up to 10 cm diameter by 15 cm) to neutrons 0.5-20 MeV has been studied using the 2.5 MeV neutron generator at the University of Michigan, and the d(d,n), 13C(d,n), 27Al(d,n) and other reactions at the University of Notre Dame FN tandem accelerator. The latter utilize 9 and 16 MeV deuteron beams including a pulsed beam, which permitted time-of-flight measurements. Combining pulse-shape discrimination and time-of-flight allows gating on specific neutron energy groups to determine the detector response to specific neutron energies. This will permit accurate simulation of the detector response functions for applications of these detectors in nuclear research and homeland security applications.  相似文献   

6.
The detection of special nuclear material has been studied with a mobile inspection system used both as a high sensitivity passive neutron/gamma spectroscopic tool and as an active inspection device using tagged neutrons. The detection of plutonium samples seems to be possible with passive interrogation, even for small samples, thanks to the yield of gamma ray and neutrons. Moreover the gamma ray spectrum shows clear signatures related to 239Pu. The passive detection of uranium is much more difficult because of the low neutron yield and of the easiness of shielding the gamma ray yield of highly enriched U samples. However, we show that active interrogation with tagged neutrons is able to provide signatures for the discrimination of uranium against other heavy metals.  相似文献   

7.
Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities.In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]).The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×1011 ncm2/s.This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted.The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line (http://www.info.cern.ch/asd/geant4/geant4.html[4]).To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al2O3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al2O3) filters, respectively.To get a good cadmium ratio, GEANT 4 simulations were used to define the design of the moderator in the inlet of the radiation channel. A graphite block of 22 cm thickness seems to be the optimal neutron moderator.The results showed that the combination of 5 cm of bismuth with 5 cm of sapphire permits the filtration of gamma-rays, epithermal neutrons as well as fast neutrons in a considerable way without affecting the neutron thermal flux.  相似文献   

8.
Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high-energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cherenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cherenkov detectors, we have designed and built a 3.5 kL water Cherenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.  相似文献   

9.
Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0×108-1.0×1011 neutron cm−2. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.  相似文献   

10.
An active neutron coincidence counter using a neutron generator as an interrogation source has been suggested. Because of the high energy of the interrogation neutron source, 2.5 MeV, the induced fission rate is strongly affected by the moderator design. MCNPX simulation has been performed to evaluate the performance achieved with these moderators. The side- and bottom-moderator are significantly important to thermalize neutrons to induce fission. Based on the simulation results, the moderators are designed to be adapted to the experimental system. Their preliminary performance has been tested by using natural uranium oxide powder samples. For a sample of up to 3.5 kg, which contains 21.7 g of 235U, 2.64 cps/g-235U coincidence events have been measured. Mean background error was 9.57 cps and the resultant coincidence error was 13.8 cps. The experimental result shows the current status of an active counting using a neutron generator which still has some challenges to overcome. However, the controllability of an interrogation source makes this system more applicable for a variety of combinations with other non-destructive methods like a passive coincidence counting especially under a harsh environment such as a hot cell. More precise experimental setup and tests with higher enriched samples will be followed to develop a system to apply it to an active measurement for the safeguards of a spent fuel treatment process.  相似文献   

11.
The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3H(d,n)4H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.  相似文献   

12.
The effective high neutron scattering absorption coefficient of hydrogen (48.5 cm2/g) due to the scattering allows neutrons to reveal hydrocarbon structures with more contrast than X-rays, but at the same time limits the sample size and thickness that can be investigated. Many planar shaped objects, particularly wood samples, are sufficiently thin to allow thermal neutrons to transmit through the sample in a direction perpendicular to the planar face but not in a parallel direction, due to increased thickness. Often, this is an obstacle that prevents some tomographic reconstruction algorithms from obtaining desired results because of inadequate information or presence of distracting artifacts due to missing projections. This can be true for samples such as the distribution of glue in glulam (boards of wooden layers glued together), or the course of partially visible annual rings in trees where the features of interest are parallel to the planar surface of the sample. However, it should be possible to study these features by rotating the specimen within a limited angular range. In principle, this approach has been shown previously in a study with fast neutrons [2]. A study of this kind was performed at the Antares facility of FRM II in Garching with a 2.6×107/cm2 s thermal neutron beam. The limit of penetration was determined for a wooden step wedge carved from a 2 cm×4 cm block of wood in comparison to other materials such as heavy metals and Lucite as specimens rich in hydrogen. The depth of the steps was 1 cm, the height 0.5 cm. The annual ring structures were clearly detectable up to 2 cm thickness. Wooden specimens, i.e. shivers, from a sunken old ship have been subjected to tomography. Not visible from the outside, clear radial structures have been found that are typical for certain kinds of wood. This insight was impaired in a case where the specimen had been soaked with ethylene glycol. In another large sample study, a planar board made of glulam has been studied to show the glued layers. This study shows not only the limits of penetration in wood but also demonstrates access to structures perpendicular to the surface in larger planar objects by tomography with fast neutrons, even with incomplete sets of projection data that covers an angular range of only 90° or even 60°.  相似文献   

13.
A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.  相似文献   

14.
A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.  相似文献   

15.
The variety of imaging signals in neutron radiography and tomography became quite large compared to the pure absorption and scattering contrast in neutron radiographies and topographies in the early sixties or seventies of the last century. The diversity of absorption based techniques for neutron radiography and tomography is comparable to coherence based imaging techniques such as phase contrast, differential phase contrast, dark field imaging, diffraction enhanced contrast, refraction contrast, ultra small angle scattering contrast, grating interferometry and crystal interferometry, also the spin of the neutron was successfully used for imaging [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] and [12]. We show which effects (total reflection, diffraction, refraction) contribute to e.g. a step boundary or a phase boundary. Taking this simple object, one can learn to understand the imaging procedure and what is displayed in a radiograph.  相似文献   

16.
Micro-strip metal-semiconductor-metal detectors for thermal neutron sensing were fabricated from hexagonal boron nitride (hBN) epilayers synthesized by metal organic chemical vapor deposition. Experimental measurements indicated that the thermal neutron absorption coefficient and length of natural hBN epilayers are about 0.00361 μm−1 and 277 μm, respectively. A continuous irradiation with a thermal neutron beam generated an appreciable current response in hBN detectors, corresponding to an effective conversion efficiency approaching ∼80% for absorbed neutrons. Our results indicate that hBN semiconductors would enable the development of essentially ideal solid-state thermal neutron detectors in which both neutron capture and carrier collection are accomplished in the same hBN semiconductor. These solid-state detectors have the potential to replace 3He gas detectors, which faces the very serious issue of 3He gas shortage.  相似文献   

17.
A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.  相似文献   

18.
There is currently a great deal of technical and political effort focused on reducing the risk of potential attacks on the United States involving radiological dispersal devices or nuclear weapons. This paper proposes a benchmark problem for gamma-ray and X-ray cargo monitoring with results calculated using MCNP5, v1.51. The primary goal is to provide a benchmark problem that will allow researchers in this area to evaluate Monte Carlo models for both speed and accuracy in both forward and inverse calculational codes and approaches for nuclear security applications. A previous benchmark problem was developed by one of the authors (RPG) for two similar oil well logging problems (Gardner and Verghese, 1991, [1]). One of those benchmarks has recently been used by at least two researchers in the nuclear threat area to evaluate the speed and accuracy of Monte Carlo codes combined with variance reduction techniques. This apparent need has prompted us to design this benchmark problem specifically for the nuclear threat researcher.This benchmark consists of conceptual design and preliminary calculational results using gamma‐ray interactions on a system containing three thicknesses of three different shielding materials. A point source is placed inside the three materials lead, aluminum, and plywood. The first two materials are in right circular cylindrical form while the third is a cube. The entire system rests on a sufficiently thick lead base so as to reduce undesired scattering events. The configuration was arranged in such a manner that as gamma-ray moves from the source outward it first passes through the lead circular cylinder, then the aluminum circular cylinder, and finally the wooden cube before reaching the detector. A 2 in.×4 in.×16 in. box style NaI (Tl) detector was placed 1 m from the point source located in the center with the 4 in.×16 in. side facing the system. The two sources used in the benchmark are 137Cs and 235U.  相似文献   

19.
Thermal neutron imaging with Ce-doped LiCaAlF6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF6.  相似文献   

20.
This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号