首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model explaining an enhanced collected charge in detectors irradiated to 1015-1016 neq/cm2 is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider.  相似文献   

2.
Silicon detectors in 3D technology are a candidate for applications in environments requiring an extreme radiation hardness, as in the innermost layers of the detectors at the proposed High-Luminosity LHC. In 3D detectors, the electrodes are made of columns etched into the silicon perpendicular to the surface. This leads to higher electric fields, a smaller depletion voltage and a reduced trapping probability of the charge carriers compared to standard planar detectors. In this article, the signal and the noise of irradiated n-in-p and p-in-n 3D silicon strip detectors are compared. The devices under test have been irradiated up to a fluence of 2×1016 1 MeV neutron equivalent particles per square centimetre (neq/cm2), which corresponds to the fluence expected for the inner pixel detector layers at the High-Luminosity LHC. A relative charge collection efficiency of approximately 70% was obtained even after the highest irradiation fluence with both detector types. The influence of different temperatures on the signal and the noise is investigated and results of annealing measurements are reported.  相似文献   

3.
Silicon Detector (SiD) is one of the proposed detectors for the future International Linear Collider (ILC). In the innermost vertex of the ILC, Si micro-strip sensors will be exposed to the neutron background of around 1-1.6×1010 1 MeV equivalent neutrons cm−2 year−1. The p+nn+ double-sided Si strip sensors are supposed to be used as position sensitive sensors for SiD. The shortening due to electron accumulation on the n+n side of these sensors leads to uniform spreading of signal over all the n+ strips and thus ensuring good isolation between the n+ strips becomes one of the major issues in these sensors. One of the possible solutions is the use of floating p-type implants introduced between the n+ strips (p-stops) and another alternative is the use of uniform layer of p-type implant on the entire n-side (p-spray). However, pre-breakdown micro-discharge is reported because of the high electric field at the edge of the p-stop/p-spray. An optimization of the implant dose profile of the p-stop and p-spray is required to achieve good electrical isolation while ensuring satisfactory breakdown performance of the Si sensors. Preliminary results of the simulation study performed on the n+n Si sensors having p-stop and p-spray using device simulation program, ATLAS, are presented.  相似文献   

4.
Electron-beam irradiated GaN n+-p diodes were characterized by deep level transient spectroscopy (DLTS) and optical responsivity measurements. The GaN n+-p diode structures were grown by metal organic chemical vapor deposition technique, and the electron irradiation was done by the energies of 1 MeV and 2 MeV with dose of 1 × 1016 cm− 2. In DLTS measurement, the defect states of Ec − 0.36 eV and Ec − 0.44 eV in the electron irradiated diodes appeared newly. The optical responsivity of GaN n+-p diode was characterized in ultra-violet region, and then the maximum optical responsivity at 350 nm was decreased after electron-beam irradiation.  相似文献   

5.
Polycarbonate samples were implanted with 100 keV N+ ions at fluences 1015, 1016 and 5 × 1016 ions cm−2. Drastic alterations in UV-Visible transmittance spectra were observed which are interrelated with change in surface color and optical absorption of the implanted samples. UV-Visible transmission studies show that at ion fluence of 1016 ions cm−2, transmission approaches to zero at about λ = 427 nm and below up to 200 nm. Optical band gap (EOPT) reduces with increase in fluence and at maximum ion fluence of 5 × 1016 N+ cm−2, EOPT was determined to be 1.56 eV whereas for pristine its value was 3.00 eV. Raman analysis indicates the formation of amorphous carbon on the surface of polycarbonate at an ion fluence of 1016 N+ cm−2. Rise in fluence to 5 × 1016 N+ cm−2 results in enhancement in disorder on the surface of the host polymer. Modifications in the structural arrangements were found to be in strong association with changes in optical properties with increase in ion fluence and the same is discussed.  相似文献   

6.
We established fabrication methods for high-quality Ge n+/p and p+/n junctions using thermal diffusion of P and implantation of B, respectively. The carrier concentrations in n+ and p+ layers were as high as 4 × 1019 and 2 × 1019 cm− 3, respectively. It was found that a peripheral surface-state current dominates the reverse leakage current in an n+/p junction diode. The protection of junction surfaces from plasma damage during the SiO2 deposition was essential to achieve high-quality source/drain junctions. The surface passivation with a GeO2 interlayer was harmful to an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) because of an increase in a surface leakage current due to inversion carriers. For a p-channel MOSFET, on the other hand, the GeO2 interlayer plays a role in decreasing the surface leakage current.  相似文献   

7.
A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate (<0.2 Hz) devices, such as the plasma focus or Z-pinch. The detector comprises a beryllium metal sheet sandwiched between two large-area xenon-filled proportional counters. A methodology for calculating the absolute response function of the detector using a “first principles” approach is described. This calibration methodology is based on the 9Be(n,α)6He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(En) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×104 cm−2, the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.  相似文献   

8.
C.R. Li  W.J. Dong 《Materials Letters》2010,64(24):2735-2737
Photoconductive devices, with remarkable photoconductive performance, of fluorine doped tin oxide/TiO2/(C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2):TiO2/Pt were fabricated. An electron injection mechanism from the (C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2) to TiO2 was proposed for the photoconductive effects, where organic-inorganic hybrid perovskite (C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2), self-organized into mesoscopic TiO2 films from solution directly, served as the electron donor. The photoconductive performance of the devices can be adjusted by the inorganic sheet thickness (tuned by m) of the hybrid perovskite. The photocurrent value increased as m value increased at the same illumination. Further, when bias voltage was 1.0 V, the ratio of photocurrent and dark current for (C6H13NH3)2(CH3NH3)2− Pb2I7:TiO2 reached as high as 7.05 × 103. The devices could be potentially used as light detectors and light-controlled switch.  相似文献   

9.
Electrically active defects induced by irradiation with 4 MeV electrons and their influence on dynamic and static parameters of p-n-structures with bases on boron doped Si1−xGex alloys (0<x?0.06) have been investigated. It has been found that after irradiation with the electron fluence Φ=2×1014 cm−2 lifetime of minority charge carriers decreases more than 12 times and forward voltage increases twice. Deep level transient spectroscopy (DLTS) studies have shown that interstitial carbon atoms are dominant electrically active defects induced by the irradiation. These defects are transformed into the complexes “interstitial carbon—interstitial oxygen” upon annealing of irradiated samples in the temperature range 50-100 °C.  相似文献   

10.
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm− 3 and mobility of 1.31 cm2 V− 1 s− 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.  相似文献   

11.
KxNa1 − xNbO3 ceramic powders have been successfully synthesized in different salts (NaCl, KCl, NaCl-KCl). Our results reveal that KxNa1 − xNbO3 powders with single-phase perovskite structure can be formed at a low temperature such as 750 °C. The type of salts has significant effects on the morphology and chemical composition of the powders. As Na+ has a higher diffusing rate and occupies the A-site in the perovskite structure more easily as compared to K+, the powder contains only a small amount of K+ (x ∼ 0.10) when it is synthesized according to formula K0.5Na0.5NbO3 and in a flux containing the same molar content of Na+ and K+. By using a NaCl or KCl salt, the K+ concentration x can be adjusted to almost 0 and 0.77, respectively.  相似文献   

12.
Silicon oxynitride (SixOyNz) buried insulating layers were synthesized by implantation of nitrogen (14N+) and oxygen (16O+) ions sequentially in the ratio 1:1 at 150 keV to ion-fluences ranging from 1 × 1017 to 5 × 1017 cm−2 to prepare silicon on insulator (SOI) structures. The as implanted samples were held at 270 °C and irradiated to total fluence of 1 × 1014 cm−2 by 60 MeV Ni+5 to study the structural changes/recrystallization of SOI structures induced by swift heavy ion (SHI) irradiation. Fourier transform infrared (FTIR) measurements on the as implanted samples (≤1 × 1018 cm−2) show a single absorption band in the wavenumber range 1300-750 cm−1 attributed to the formation of silicon oxynitride (Si-O-N) bonds in the implanted silicon. It is observed that a nitrogen rich silicon oxynitride structure is formed after SHI irradiation. The study of X-ray rocking curves on the samples show the formation of small silicon crystallites due to swift heavy ion irradiation.  相似文献   

13.
A procedure to dope n-type Cr2 − xTixO3 thin films is proposed. Besides doping the material, at the same time the method forms ohmic contacts on TixCr2 − xO3 films. It consists on the deposition of 10 nm Ti and 50 nm Au, followed by thermal annealing at 1000 °C for 20 min in N2 atmosphere. Ohmic contacts were formed on three samples with different composition: x = 0.17, 0.41 and 1.07 in a van der Pauw geometry for Hall effect measurements. These measurements are done between 35 K and 373 K. All samples showed n-type nature, with a charge carrier density (n) on the order of 1020 cm− 3, decreasing as x increased. As a function of temperature, n shows a minimum around 150 K, while the mobilities have an almost constant value of 11, 28 and 7 cm2V− 1 s− 1 for x = 0.17, 0.41 and 1.07, respectively.  相似文献   

14.
Wide band gap InGaZn6O9 films of thickness ~ 350 nm were deposited on sapphire (0001) at room temperature by using the pulsed laser deposition technique. The transparent films showed the optical transmission of > 80% with the room temperature Hall mobility of ~ 10 cm2/V s and conductivity of 4 × 102 S/cm at a carrier density > 1020 cm− 3. The electrical properties as a function of deposition temperatures revealed that the conductivity and mobility almost retained up to the deposition temperature of 200 °C. The films annealed in different atmospheres suggested oxygen vacancy plays an important role in determining the electrical conductivity of the compound. Room temperature grown heterostructure of n-InGaZn6O9/p-SiC showed a good rectifying behavior with a leakage current density of less than 10− 9 A/cm2, current rectifying ratio of 105 with a forward turn on voltage ~ 3 V, and a breakdown voltage greater than 32 V.  相似文献   

15.
Ion implantation-induced nanoclusters were synthesized in reactive sputtered Ta2O5 films by Ge+ implantation and subsequent annealing. The effects of ion fluence and post-implantation thermal treatment on the kinetics of the nanoclustering were investigated. Ge+ ions with energy of 40 keV and fluences of 5 × 1015, 1 × 1016 and 5 × 1016 cm 2 were implanted in the Ta2O5 layers at room temperature. The samples were thermally treated by rapid thermal annealing in vacuum at 700 °C and 1000 °C for 30, 60 and 180 s. Structural studies of all samples were done by Cross-sectional Transmission Electron Microscopy in diffraction and phase contrast mode. Under optimized conditions (high implantation fluence, subsequent annealing) nanoclusters are formed around the projected ion range of the implanted Ge+ ions. The structure of the implanted Ta2O5 matrix changes from amorphous to orthorhombic when the annealing was performed at 1000 °C. Although the Ta2O5 matrix crystallizes, no evidence is obtained for crystallization of the embedded nanoclusters even after annealing at 1000 °C.  相似文献   

16.
In order to obtain fine-particle LiFePO4 with excellent electrochemical performance, LiFePO4/C powders were synthesized by a poly(ethylene glycol) (PEG) assisted sol-gel method. All samples were characterized by X-ray powder diffraction and scanning electron microscopy, and their electrochemical properties were investigated by cycle voltammograms and charge-discharge tests. The sample, synthesized with the nPEG/nLFP = 1:1 under sintering temperature of 600 °C, possesses the global morphology and particle size of about 100 nm. This sample delivers the first discharge capacity of 162 mAh g−1, i.e. 95.3% of the theoretical capacity, at the 15 mA g−1 discharge current between 2.5 and 4.0 V (versus Li/Li+). The sample also displays a robust rate capability and stable cycle-life. The improved electrochemical performance originates mainly from the fine particle of nanometric dimension, regular global morphology and uniform dispersing in the product as well as the increased electronic conductivity by carbon coating.  相似文献   

17.
Li3 − xFe2 − xTix(PO4)3/C (x = 0-0.4) cathodes designed with Fe doped by Ti was studied. Both Li3Fe2(PO4)3/C (x = 0) and Li2.8Fe1.8Ti0.2(PO4)3/C (x = 0.2) possess two plateau potentials of Fe3+/Fe2+ couple (around 2.8 V and 2.7 V vs. Li+/Li) upon discharge observed from galvanostatic charge/discharge and cyclic voltammetry. Li2.8Fe1.8Ti0.2(PO4)3/C has higher reversibility and better capacity retention than that of the undoped Li3Fe2(PO4)3/C. A much higher specific capacity of 122.3 mAh/g was obtained at C/20 in the first cycle, approaching the theoretical capacity of 128 mAh/g, and a capacity of 100.1 mAh/g was held at C/2 after the 20th cycle.  相似文献   

18.
We have successfully grown 360-nm-thick undoped n-BaSi2 epitaxial layers on the n+-BaSi2/p+-Si(111) tunnel junction, by molecular beam epitaxy. The external quantum efficiency reached approximately 17.8% at 500 nm under a reverse bias voltage of 4 V at room temperature, the highest value ever reported for semiconducting silicides. The quantum efficiency was compared to 240-nm-thick undoped n-BaSi2 epitaxial layers on a p-Si(111) substrate.  相似文献   

19.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

20.
We have investigated the magnetocaloric properties of Ln0.67Ba0.33Mn1 − xFexO3 (Ln = La or Pr) manganites with x = 0 and 0.05. All compounds present a maximum and large magnetocaloric effect near the Curie temperature (TC). The associated maximum value of the magnetic entropy change, at 5 T applied change in the magnetic field, is 4.37 J.kg− 1.K− 1 for Pr0.67Ba0.33MnO3 manganite with a TC value of 205 K. The corresponding relative cooling power (RCP) reaches 230 J.kg− 1. All the samples present similar RCP values that are relatively high and are promising materials to be used in ecologically friendly magnetic refrigeration technology. Iron doping reduces both TC and ΔSMmax and spreads the temperature working range with an almost constant RCP and can then be used to tune the working conditions of a refrigerator device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号