首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.  相似文献   

2.
3.
The beamline for Imaging with COld Neutrons (ICON) at Swiss spallation neutron source (SINQ) at Paul Scherrer Institut has a flexible design to meet the requests from a wide user community. The current status of the beamline and its characteristics are described. The instrumentation includes three experimental positions from which two are equipped with digital camera based imaging detectors. Tomographic imaging is among the standard methods available at the beamline. Advanced methods such as energy-selective imaging and grating interferometry are available as instrument add-ons which are easily installed.  相似文献   

4.
A cold neutron radiography/tomography instrument is under construction at the Compact Pulsed Hadron Source (CPHS) at Tsinghua University, China. The neutron flux is so low that an acceptable neutron radiographic image requires a long exposure time in the single-hole imaging mode. The coded-source-based imaging technique is helpful to increase the utilization of neutron flux to reduce the exposure time without loss in spatial resolution and provides high signal-to-noise ratio (SNR) images. Here we report a preliminary study on the feasibility of coded-source-based technique applied to the cold neutron imaging with a low-brilliance neutron source at the CPHS. A proper coded aperture is designed to be used in the beamline instead of the single-hole aperture. Two image retrieval algorithms, the Wiener filter algorithm and the Richardson-Lucy algorithm, are evaluated by using analytical and Monte Carlo simulations. The simulation results reveal that the coded source imaging technique is suitable for the CPHS to partially solve the problem of low neutron flux.  相似文献   

5.
In neutron radiography and tomography, the image contrast is caused by a variation of the effective macroscopic cross-section over the sample volume. Narrowing the energy band of the polychromatic neutron beam in the cold energy range increases the image contrast significantly and opens an access to the crystallographic structure of the sample. Here, we show that crystallographic microstructures of welded stainless steel samples can be visualized and quantified in two and three dimensions by the energy selective neutron imaging. The energy selective neutron radiography maps preferred crystallite orientations over the sample and provides energy values of the highest image contrast. Furthermore, a high contrast neutron tomography visualizes preferred crystallite orientations over the whole macroscopic sample volume.  相似文献   

6.
We present two different methods to increase the size of available neutron beams in order to allow for the investigation of large objects. Application of these methods is demonstrated for radiographic imaging of fuel cells. The first approach is a scanning procedure based on the coordinated translation of detector and sample through the beam. Further advancement was achieved by installing a focusing neutron guide, which offers an expanded neutron beam size after diverging from a focused point source.  相似文献   

7.
The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency (∼70% for cold neutrons), spatial resolutions ranging from 15 to 55 μm and a temporal resolution of ∼1 μs—combined with the virtual absence of readout noise—make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual ∼400 μm grains in an organic powder encapsulated in a ∼700 μm thick metal casing.  相似文献   

8.
The global shortage of 3He gas is an issue to be addressed in neutron detection. In the context of the research and development activity related to the replacement of 3He for neutron counting systems, neutron diffraction measurements performed on the INES beam line at the ISIS pulsed spallation neutron source are presented. For these measurements two different neutron counting devices have been used: a 20 bar pressure squashed 3He tube and a Yttrium-Aluminum-Perovskite scintillation detector. The scintillation detector was coupled to a cadmium sheet that registers the prompt radiative capture gamma rays generated by the (n,γ) nuclear reactions occurring in cadmium. The assessment of the scintillator based counting system was done by performing a Rietveld refinement analysis on the diffraction pattern from an ancient Japanese blade and comparing the results with those obtained by a 3He tube placed at the same angular position. The results obtained demonstrate the considerable potential of the proposed counting approach based on the radiative capture gamma rays at spallation neutron sources.  相似文献   

9.
A neutron detector with moderate energy resolution (3 MeV) has been built for neutrons in the energy range 75–175 MeV. The detector was designed for coincidence scattering experiments. The design eliminates the need for long neutron flight paths necessary for comparable energy resolution time-of-flight measurements with a comparable efficiency-solid angle product (0.02 msr). The detector consists of thin plastic scintillators in which the neutron undergoes n–p elastic scattering. The second-scattered protons are tracked by drift chambers and detected in a sodium iodide array. The design motivations and features are presented along with results from detailed in-beam experimental tests.  相似文献   

10.
Inelastic neutron scattering in the HPGe detector produces wide, triangular-shaped peaks in the spectrum. We develop an accurate model for the peak shape and show that the inclusion of the model in the gamma spectrum analysis makes it possible to quantify fast neutron scattering in the Ge crystal and improves the estimation of the baseline. This in turn facilitates the detection of fission products present at trace levels in environmental samples. The model, together with simulations, is used to deduce some properties of the underlying neutron energy distribution. The neutron evaporation temperature of 1.1 MeV is obtained from the analysis of environmental monitoring gamma spectra.  相似文献   

11.
A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded α-iron plate, and we successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size.  相似文献   

12.
Instead of using the phase grating concept for dark field imaging, macroscopic scattering grids were employed at the ANTARES neutron imaging facility. Two Cadmium grids with a 1 mm gap and 1.2 mm bar were adjusted in a distance of only a few cm in order to block the direct beam. Thus, by placing the samples between these two grids only neutrons that were scattered at the samples were transmitted. A linear motion of the coupled grids allowed scanning across the samples and obtaining complete scattering projections, which delivered surprisingly sharp images. The geometric relation between grids permits determination of the transmitted scattering angles.  相似文献   

13.
Thermal neutron imaging with Ce-doped LiCaAlF6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF6.  相似文献   

14.
Differential die-away-analysis (DDAA) is a sensitive technique to detect presence of fissile materials such as and . DDAA uses a high-energy (14 MeV) pulsed neutron generator to interrogate a shipping container. The signature is a fast neutron signal hundreds of microseconds after the cessation of the neutron pulse. This fast neutron signal has decay time identical to the thermal neutron diffusion decay time of the inspected cargo. The theoretical aspects of a cargo inspection system based on the differential die-away technique are explored. A detailed mathematical model of the system is developed, and experimental results validating this model are presented.  相似文献   

15.
A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate (<0.2 Hz) devices, such as the plasma focus or Z-pinch. The detector comprises a beryllium metal sheet sandwiched between two large-area xenon-filled proportional counters. A methodology for calculating the absolute response function of the detector using a “first principles” approach is described. This calibration methodology is based on the 9Be(n,α)6He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(En) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×104 cm−2, the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.  相似文献   

16.
Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities.In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]).The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×1011 ncm2/s.This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted.The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line (http://www.info.cern.ch/asd/geant4/geant4.html[4]).To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al2O3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al2O3) filters, respectively.To get a good cadmium ratio, GEANT 4 simulations were used to define the design of the moderator in the inlet of the radiation channel. A graphite block of 22 cm thickness seems to be the optimal neutron moderator.The results showed that the combination of 5 cm of bismuth with 5 cm of sapphire permits the filtration of gamma-rays, epithermal neutrons as well as fast neutrons in a considerable way without affecting the neutron thermal flux.  相似文献   

17.
We present a single pixel prototype of a pixelated Bragg edge detector for neutron transmission measurements. The optical signal coming from a scintillator is collected by an optical fiber and is detected by an avalanche photodiode. A fast, Field Programmable Gate Array based, readout allows to obtain transmission spectra within reasonable acquisition times. The performances of the instrument have been tested by measuring the transmission spectra of iron powder samples with two different scintillators. The instrument accuracy in detecting the Bragg edges positions is comparable with the state of the art for similar devices.  相似文献   

18.
In coded source neutron imaging the single aperture commonly used in neutron radiography is replaced with a coded mask. Using a coded source can improve the neutron flux at the sample plane when a very high L/D ratio is needed. The coded source imaging is a possible way to reduce the exposure time to get a neutron image with very high L/D ratio. A 17×17 modified uniformly redundant array coded source was tested in this work. There are 144 holes of 0.8 mm diameter on the coded source. The neutron flux from the coded source is as high as from a single 9.6 mm aperture, while its effective L/D is the same as in the case of a 0.8 mm aperture. The Richardson-Lucy maximum likelihood algorithm was used for image reconstruction. Compared to an in-line phase contrast neutron image taken with a 1 mm aperture, it takes much less time for the coded source to get an image of similar quality.  相似文献   

19.
The variety of imaging signals in neutron radiography and tomography became quite large compared to the pure absorption and scattering contrast in neutron radiographies and topographies in the early sixties or seventies of the last century. The diversity of absorption based techniques for neutron radiography and tomography is comparable to coherence based imaging techniques such as phase contrast, differential phase contrast, dark field imaging, diffraction enhanced contrast, refraction contrast, ultra small angle scattering contrast, grating interferometry and crystal interferometry, also the spin of the neutron was successfully used for imaging [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] and [12]. We show which effects (total reflection, diffraction, refraction) contribute to e.g. a step boundary or a phase boundary. Taking this simple object, one can learn to understand the imaging procedure and what is displayed in a radiograph.  相似文献   

20.
Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号