首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this present work we have grown Cd0.9Zn0.1Te doped with indium by the traveling heater method (THM) technique. Large 2 in diameter CZT ingots of more than 1 kg each were successfully grown by the THM technique in vertical configuration. In order to evaluate our as-grown CZT samples, charge transport characteristics were studied at and below room temperature. The key parameter investigated for as-grown CZT samples was the mobility-trapping time product and its temperature variation. Mobility-trapping time values as high as 9×10−3 cm2/V at 30 °C were measured for samples exhibiting resistivities in the 1-2×1010 Ω cm range. The as-grown samples showed moderately good resolution of 1.5-3.5% at 662 keV when fabricated. The variation of the internal electric field along the depth of the detector was studied for as-grown material to evaluate deformations inside the crystal due to the presence of residual stress or other defects.  相似文献   

2.
The aim of this study is to develop an energy-binned photon-counting (EBPC) detector that enables us to provide energy information of x-rays with a reasonable count statistics. We used Al-pixel/CdTe/Pt semiconductor detectors, which had an active area of 8 mm×144 mm and consisted of 18 modules aligned linearly. The size of a CdTe detector module was 8 mm×8 mm and the thickness of the CdTe crystal was 1 mm. Each module consisted of 40×40 pixels and the pixel size was 200 μm×200 μm. We applied the bias voltage of −500 V to the Pt common electrode. The detector counted the number of x-ray photons with four different energy windows, and output four energy-binned images with pixel depths of 12, 12, 11 and 10 bits at a frame rate of 1200 Hz (300 Hz×4 energy bins). The basic performance of the detector was evaluated in several experiments. The results showed that the detector realized the photon counting rate of 0.4×106 counts/sec/pixel (107 counts/sec/mm2), energy resolution 4.4% FWHM at 122 keV. The integral uniformity of the detector was about 1% and the differential uniformity was about 1%. In addition, the image quality was examined with a resolution chart and step-wedge phantoms made of aluminum and polymethyl methacrylate. And we compared the quality of an acquired image with that acquired with an energy integration detector. The results of these experiments showed that the developed detector had desirable intrinsic characteristics for x-ray photon counting imaging.  相似文献   

3.
4.
5.
Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. It is based on a planar, 1 mm2 large paramagnetic temperature sensor made of sputtered Au:Er, which covers a superconducting meander-shaped pickup coil coupled to a low-noise dc-SQUID to monitor the magnetization of the sensor. A piece of gold foil of 2.5×2.5×0.07 mm3 was glued to the Au:Er film to serve as an absorber for incident alpha particles. The detector performance was investigated with an 241Am source. The signal size comparison for alpha and gamma peaks with a large difference in energy demonstrated that the detector had good linear behavior. An energy resolution of 2.83±0.05 keV in FWHM was obtained for 5.5 MeV alpha particles.  相似文献   

6.
We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5×2×100 mm3 polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2×2×100 mm3 crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2×2×100 mm3 crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4±0.4%, 16.0±1.2% and 28.3±2.1% with mean spatial resolutions of 7.0±1.0, 9.4±3.3 and 26.0±5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.  相似文献   

7.
The charge sharing effect in pixelated CdZnTe (CZT) detectors with a common anode steering grid has been studied. The impact on energy resolution of weighting potential cross-talk and ballistic deficit due to cathode signal shaping has been investigated. A detailed system modeling package considering charge induction, electronic noise, pulse shaping, and ASIC triggering procedures has been developed to study the characteristics of common-grid CZT detectors coupled to the VAS_UM/TAT4 ASIC. Besides an actual common-grid CZT detector coupled to VAS_UM/TAT4 ASIC, a prototype digital read-out system has been developed to better understand the nature of the charge sharing effect.  相似文献   

8.
Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (SiPM) matrices is proposed for the construction of a 4D PET module based on LSO continuous crystals, which is envisaged to replace the standard PET block detector. The expected spatial resolution of the module for the photon hit position is below 1 mm, and it will perform at the same time, the Depth Of Interaction (DOI) calculation and the Time Of Flight (TOF) measurement. The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector performances. We have developed a flexible and modular DAQ system for the read-out of two modules in time coincidence for Positron Emission Tomography (PET) applications. The DAQ system is based on a previously developed custom front-end ASIC chip (BASIC) which allows to read-out SiPM matrices preserving their spectroscopy and timing capabilities. Here we describe the acquisition system architecture and its characterization measurements.  相似文献   

9.
The latest advances in SiC X-ray detectors are presented: a pixel detector coupled to a custom ultra low noise CMOS preamplifier has been characterized at room and high temperature. An equivalent noise energy (ENE) of 113 eV FWHM, corresponding to 6.1 electrons r.m.s., has been achieved with the detector/front-end system operating at +30 °C. A Fano factor of F=0.10 has been estimated from the 55Fe spectrum. When the system is heated up to +100 °C, the measured ENE is 163 eV FWHM (8.9 electrons r.m.s.). It is determined that both at room and at high temperature the performance are fully limited by the noise of the front-end electronics. It is also presented the capability of SiC detectors to operate in environments under unstable temperature conditions without any apparatus for temperature stabilization; it has been proved that a SiC detector can acquire high resolution X-ray spectra without spectral line degradation while the system temperature changes between +30 and +75 °C.  相似文献   

10.
We evaluated a spectroscopy-grade 15×15×7 mm3 CdZnTe (CZT) crystal with a high μτ-product, >10−2 cm2/V, but impaired by microscopic extended defects, such as walls of dislocations, low-angle and sub-grain boundaries, and Te inclusions. First, we evaluated a planar detector fabricated from this crystal using a Micro-scale X-ray Detector Mapping (MXDM) technique. Then, we fabricated from the same crystal a pixel detector to study local non-uniformities of the electric field. The measured X-ray response maps confirmed the presence of non-uniformities in the charge transport, and they showed that the global- and local-distortions of the internal E-field correlated to the extended defects and space-charge buildup on the side surfaces.  相似文献   

11.
We have designed a 5×5 mm2 position sensitive solid-state photomultiplier (PS-SSPM) using a complementary metal-oxide-semiconductor (CMOS) process that provides imaging capability on the micro-pixel level. The PS-SSPM has 11,664 micro-pixels total, with each having an active area and micro-pixel pitch of 30×30 μm2 and 44.3 μm, respectively. The PS-SSPM was then examined for its performance characteristics such as its energy and spatial resolution, and LYSO scintillator array imaging capabilities. When coupled to 5×5×3 mm3 LYSO, the energy resolution at 511 keV (22Na) was measured as a function of bias, and corrected for the PS-SSPM non-linear output. The resolution is 14% (FWHM) at 511 keV with 30 V bias. The LYSO coincidence timing resolution was 9.4 ns (FWHM) at 511 keV. Spatial resolution studies were conducted using a focused (∼30 μm beam spot diameter) pulsed 635 nm diode laser. Scintillator array imaging studies were conducted at 511 keV using a 6×6 LYSO array, having 500 μm pixels (530 μm pitch) and 5 mm tall.  相似文献   

12.
Physical structure of pixelated detectors provides a unique tool to evaluate the effects of different types of defects in the semiconductor material that is used to fabricate the detectors. The spectroscopic performance measured for individual pixels or groups of pixels can be used to correlate point defects or fields of inhomogeneities within the material with the charge collected from photoelectric events. A block of single crystal mercuric iodide of approximately 18×18 mm2 area and between 6 and 10 mm thick is prepared. The homogeneity of this material is then investigated with light in the transparent region for HgI2 using an optical microscope. Several types of defects can be identified in this way by the scattering of light, for example, single large inclusions or voids and areas of haziness consisting of fields of small inclusions. Standard procedures are used to fabricate from this block a pixelated detector with a 121-pixel anode structure. The performance of each pixel is measured, and differences in charge collection are correlated with the optical data. Measurement data are presented, and possible mechanisms of the interactions between the defects and the charge carriers are discussed.  相似文献   

13.
In this paper, we used a combined experimental and Monte Carlo simulation approach to investigate the detailed charge collection process within thick CdTe/CZT detectors operated inside a strong magnetic field. As one of the key objectives, we quantitatively assessed the effect of the Lorenz force on the migration of charge carriers inside the detector bulk. This information would allow an accurate modeling of the detector's response to gamma ray interactions and therefore help to compensate for the event-positioning error induced by the strong magnetic field. In this study, a pixilated ERPC detector with 350 μm square pixels was set on a non-magnetic gantry and operated inside a 3 T Siemens MRI scanner. Multiple studies, with similar geometries, were performed using the same detector setup with and without the presence of the magnetic field to investigate the effect on the charge collection behavior from the strong magnetic field. The experimental results were used to validate the Monte Carlo simulation package that models both photon transportation and charge collection process inside the detector.  相似文献   

14.
Highly-charged heavy ions like U91+ provide unique conditions for the investigation of relativistic and quantum electrodynamical effects in strong electromagnetic fields. We present two X-ray detectors developed for high-resolution spectroscopy on highly-charged heavy ions. Both detectors consist of metallic magnetic calorimeters (MMCs) forming linear eight-pixel arrays. The first detector, maXs-20, is developed for the detection of X-rays up to 20?keV with an energy resolution below 3?eV. The second device, maXs-200, is designed for X-ray energies up to 200?keV with an energy resolution of 40?eV. The results of characterization measurements of single detectors of both arrays will be shown and discussed. In both cases, the performance of the detectors agrees well with their design values. Furthermore, we present a prototype MMC for soft X-rays with improved magnetic flux coupling. In first characterization measurements the energy resolution of this device was 2.0?eV (FWHM) for X-rays up to 6?keV.  相似文献   

15.
In this work, we developed X-ray radiation detectors with sandwich structure fabricated from nano-crystalline diamond (NCD) films. These NCD films with different grain size ranging from 15 nm to 160 nm were grown on silicon substrates using a hot-filament chemical vapor deposition technique. I-V measurement results indicate that with reducing of the grain size, the resistivity of diamond films decreases from 9.5 × 108 to 6.20 × 107 Ω cm and the ratio of the photocurrent to the dark-current (Iph/Id) of the detectors decreases rapidly from 0.45 to 0.09 at an electric field of 50 kV/cm. Typical spectral response to 5.9 keV 55Fe X-rays shows that counting efficiency and energy resolution of NCD detectors with large grains are better than those of detectors with small grains, due to the less defects and grain-boundaries contained in the film.  相似文献   

16.
A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional (“standard”) 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name “Independent Coaxial Detector Array”, or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment. Since the large electrode spacing (up to 500 μm) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray).  相似文献   

17.
We discuss a new class of micro pattern gas detectors, the gas pixel detector (GPD), in which a complete integration between the gas amplification structure and the read-out electronics has been reached. An application-specific integrated circuit (ASIC) built in deep sub-micron technology has been developed to realize a monolithic device that is, at the same time, the pixelized charge collecting electrode and the amplifying, shaping and charge measuring front-end electronics. The CMOS chip has the top metal layer patterned in a matrix of 80 μm pitch hexagonal pixels, each of them directly connected to the underneath electronics chain which has been realized in the remaining five layers of the 0.35 μm VLSI technology. Results from tests of a first prototype of such detector with 2 k pixels and a full scale version with 22 k pixels are presented. The application of this device for Astronomical X-ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation is shown. Results from a full MonteCarlo simulation for two astronomical sources, the Crab Nebula and the Hercules X1, are also reported.  相似文献   

18.
Recent renewed emphasis placed on gamma-ray detectors for national security purposes has motivated researchers to identify and develop new scintillator materials capable of high energy resolution and growable to large sizes. We have discovered that SrI2(Eu) has many desirable properties for gamma-ray detection and spectroscopy, including high light yield of ∼90,000 photons/MeV and excellent light yield proportionality. We have measured <2.7% FWHM at 662 keV with small detectors (<1 cm3) in direct contact with a photomultiplier tube, and ∼3% resolution at 662 keV is obtained for 1 in.3 crystals. Due to the hygroscopic nature of SrI2(Eu), similar to NaI(Tl), proper packaging is required for field use. This work describes a systematic study performed to determine the key factors in the packaging process to optimize performance. These factors include proper polishing of the surface, the geometry of the crystal, reflector materials and windows. A technique based on use of a collimated 137Cs source was developed to examine light collection uniformity. Employing this technique, we found that when the crystal is packaged properly, the variation in the pulse height at 662 keV from events near the bottom of the crystal compared to those near the top of the crystal could be reduced to <1%. This paper describes the design and engineering of our detector package in order to improve energy resolution of 1 in.3-scale SrI2(Eu) crystals.  相似文献   

19.
Performance of Lutetium Fine Silicate (LFS-3) scintillator in gamma-ray spectrometry has been investigated in comparison with the well known LSO crystal. The tests covered measurements of light output in terms of number of photoelectrons, energy resolution and non-proportionality. Time resolution was measured in coincidence experiments with 511 keV annihilation quanta from a 22Na gamma source. Decay time constants of the light pulse were calculated on the basis of timing spectra obtained using Thomas-Bollinger single photon method. Afterglow was measured about 30 ms after the crystal was irradiated by a strong 13.9 GBq 241Am source. Improvement in the energy resolution for 662 keV γ-rays from 137Cs, shorter decay time constants and better time resolution were observed in case of LFS-3, when compared with LSO. For LFS-3 energy resolution for 662 keV from 137Cs, decay time and time resolution were equal to about 7.66±0.23%, 40.5±1.2 ns and 161±5 ps, respectively, whereas for LSO the same parameters were equal to 8.13±0.23%, 43.9±1.3 ns and 173±5 ps, respectively. The study showed that LFS-3 crystal is an excellent substitute for LSO crystal.  相似文献   

20.
G. Sou  M. Redon  D. Prêle  M. Piat 《低温学》2009,49(11):681-685
This paper presents an ultra low noise instrumentation based on cryogenic electronic integrated circuits (ASICs: Application Specific Integrated Circuits). We have designed successively two ASICs in standard BiCMOS SiGe 0.35 μm technology that have proved to be operating at cryogenic temperatures. The main functions of these circuits are the readout and the multiplexing of TES/SQUID arrays. We report the cryogenic operation of a first ASIC version dedicated to the readout of a 2 × 4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low white noise (0.2 nV/sqrtHz) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented. We finally report on the development of a second version of this circuit to readout a 3 × 8 detectors array with improved noise performances and upgraded functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号