首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel dosimetry allows three-dimensional (3D) measurement of absorbed dose in tissue-equivalent dosemeter phantoms. Gel phantoms are imaged using optical techniques. In neutron capture therapy (NCT), properly designed gel dosemeters can give 3D dose distributions, due to the various components of the secondary radiation, in phantoms exposed in the thermal or epithermal column of a nuclear reactor. In addition to the therapeutic dose arising from the reaction 10B(n,alpha)7Li, the other dose components are also obtainable, i.e. the gamma dose (due to reactor background and to the reaction 1H(n,gamma)2H of thermal neutrons with hydrogen, the dose due to protons emitted in the reaction 14N(n,p)14C of thermal neutrons with nitrogen and the dose due to recoil protons resulting from elastic scattering of epithermal neutrons.  相似文献   

2.
Secondary neutrons produced in high-energy therapeutic ion beams require special attention since they contribute to the dose delivered to patient, both to tumour and to the healthy tissues. Moreover, monitoring of neutron production in the beam line elements and the patient is of importance for radiation protection aspects around ion therapy facility. Monte Carlo simulations of light ion transport in the tissue-like media (water, A-150, PMMA) and materials of interest for shielding devices (graphite, steel and Pb) were performed using the SHIELD-HIT and MCNPX codes. The capability of the codes to reproduce the experimental data on neutron spectra differential both in energy and angle is demonstrated for neutron yield from the thick targets. Both codes show satisfactory agreement with the experimental data. The absorbed dose due to neutrons produced in the water and A-150 phantoms is calculated for proton (200 MeV) and carbon (390 MeV/u) beams. Secondary neutron dose contribution is approximately 0.6% of the total dose delivered to the phantoms by proton beam and at the similar level for both materials. For carbon beam the neutron dose contribution is approximately 1.0 and 1.2% for the water and A-150 phantoms, respectively. The neutron ambient dose equivalent, H(10), was determined for neutrons leaving different shielding materials after irradiation with ions of various energies.  相似文献   

3.
An irradiation field of high-energy neutrons produced in the forward direction from a thick tungsten target bombarded by 500 MeV protons was arranged at the KENS spallation neutron source facility. In this facility, shielding experiment was performed with an ordinary concrete shield of 4 m thickness assembled in the irradiation room, 2.5 m downstream from the target centre. Activation detectors of bismuth, aluminium, indium and gold were inserted into eight slots inside the shield and attenuations of neutron reaction rates were obtained by measurements of gamma-rays from the activation detectors. A MARS14 Monte Carlo simulation was also performed down to thermal energy, and comparisons between the calculations and measurements show agreements within a factor of 3. This neutron field is useful for studies of shielding, activation and radiation damage of materials for high-energy neutrons, and experimental data are useful to check the accuracies of the transmission and activation calculation codes.  相似文献   

4.
A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.  相似文献   

5.
This study compares the effective doses from a MIRD-type stylised model with those derived from the scaled-down version of the tomographic VIP-Man model for photon, electron, neutron and proton beams. The effective dose results from these two models show that they differ from each other within approximately 10% for common high-energy photon beams, within approximately 16% for neutrons, and within approximately 4% for high-energy proton beams. However, for low-energy protons and common electron beams, the effective doses can be different in >100%. It is concluded that the use of a single tomographic models will not improve the operational radiation protection dosimetry involving external beam exposures.  相似文献   

6.
The radiation fields outside the planned experimental Sub-critical Assembly in Dubna (SAD) have been studied in order to provide a basis for the design of the concrete shielding that cover the reactor core. The effective doses around the reactor, induced by leakage of neutrons and photons through the shielding, have been determined for a shielding thickness varying from 100 to 200 cm. It was shown that the neutron flux and the effective dose is higher above the shielding than at the side of it, owing to the higher fraction of high-energy spallation neutrons emitted in the direction of the incident beam protons. At the top, the effective dose was found to be -150 microSv s(-1) for a concrete thickness of 100 cm, while -2.5 microSv s(-1) for a concrete thickness of 200 cm. It was also shown that the high-energy neutrons (> 10 MeV), which are created in the proton-induced spallation interactions in the target, contribute for the major part of the effective doses outside the reactor.  相似文献   

7.
During radiation therapy with an ion beam, the production of secondary particles like neutrons, protons and heavier ions contribute to the dose delivered to tumour and healthy tissues outside the treated volume. Also, the secondary particles leaving the patient are of interest for radiation background around the ion-therapy facility. Calculations of secondary particle production and the dose absorbed by water, soft tissue and a multi-material phantom simulating the heterogeneous media of the patient body were performed for protons, helium, lithium and carbon ions in the energy range up to 400 MeV u(-1). The Monte Carlo code SHIELD-HIT for transport of protons and light ions in tissue-like media was used in these studies. The neutron ambient dose-equivalent, H*(10), was determined for neutrons leaving the water phantom irradiated with different light ion beams. The comparison of calculated secondary particle production in the water and PMMA phantoms irradiated with helium and carbon ions shows satisfactory agreement with experimental data.  相似文献   

8.
The variation of the response of the instruments with the neutron energy has to be determined in well-characterized monoenergetic neutron fields. The AMANDE facility will deliver such neutron fields between 2 keV and 20 MeV in an experimental hall designed with metallic walls for neutron scattering minimisation. The neutrons will be produced by nuclear interaction of accelerated protons or deuterons on thin targets of selected materials. The measuring devices to be characterised will be accurately placed with a fully automated detector transport system. The energy of the neutron field will be validated by time-of-flight experiments and a large set of standard detectors and fluence monitors will be used to determine the neutron fluence references. The scattered neutron fluence and dose equivalent were calculated by the MCNP Monte Carlo code at several measuring points in order to determine their contribution to the neutron field.  相似文献   

9.
NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons.The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks.A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.  相似文献   

10.
Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.  相似文献   

11.
The NPDGamma collaboration is performing a measurement of the very small parity-violating asymmetry in the angular distribution of the 2.2 MeV γ-rays from the capture of polarized cold neutrons on protons (Aγ). The estimated size of Aγ is 5×10−8, and the measured asymmetry is proportional to the neutron polarization upon capture. Since the interaction of polarized neutrons with one of the two hydrogen molecular states (orthohydrogen) can lead to neutron spin-flip scattering, it is essential that the hydrogen in the target is mostly in the molecular state that will not depolarize the neutrons (≥99.8% parahydrogen). For that purpose, in the first stage of the NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE), we operated a 16-l liquid hydrogen target, which was filled in two different occasions. The parahydrogen fraction in the target was accurately determined in situ by relative neutron transmission measurements. The result of these measurements indicate that the fraction of parahydrogen in equilibrium was 0.9998±0.0002 in the first data taking run and 0.9956±0.0002 in the second. We describe the parahydrogen monitor system, relevant aspects of the hydrogen target, and the procedure to determine the fraction of parahydrogen in the target. Also assuming thermal equilibrium of the target, we extract the scattering cross-section for neutrons on parahydrogen.  相似文献   

12.
Many technological activities involve the potential for worker exposure to neutrons. The determination of neutron personal dose equivalent is difficult due to a number of factors including the materials and methods used to evaluate the response of personal dosemeters and the quantities for expressing dose equivalent. Nevertheless, recent progress has been made in the development of devices and techniques for the measurement and calibration of neutron personal dosemeters. The quantities and units used to express neutron dose equivalent are being improved and clarified. Therefore, it is expected that a number of remaining difficulties with neutron dosimetry will be mitigated.  相似文献   

13.
In Brazil, the replacement of rather old cobalt and cesium teletherapy machines with high-energy (E > 10 MV) medical linear accelerators (linacs) started in the year 2000, as part of an effort by the Ministry of Health to update radiotherapy installations. Since then, the contamination of undesirable neutrons in the therapeutic beam generated by these high-energy photons has become an issue of concern when considering patient and occupational doses. The walls of the treatment room are shielded to attenuate the primary and secondary X-ray fluence, and this shielding is generally considered adequate also to attenuate neutrons. However, these neutrons are scattered through the treatment room maze and might result in a radiological problem at the door entrance, an area of high occupancy by the workers of a radiotherapy facility. This paper presents and discusses the results of ambient dose equivalent measurements of neutron using bubble detectors. The measurements were made at different points inside the treatment rooms, including the isocentre and the maze. Several radiation oncology centres, which are users of Varian Clinac or Siemens machines, have agreed to allow measurements to be taken at their facilities. The measured values were compared with the results obtained through the semi-empirical Kersey method of neutron dose equivalent calculation at maze entrances, with reported values provided by the manufacturers as well as values published in the literature. It was found that the measured values were below the dose limits adopted by the Brazilian Regulatory Agency (CNEN), requiring no additional shielding in any of the points measured.  相似文献   

14.
Neutrons can be produced with low-energy ion accelerators for many applications, such as the characterisation of neutron detectors, the irradiation of biological samples and the study of the radiation damage in electronic devices. Moreover, accelerator-based neutron sources are under development for boron neutron capture therapy (BNCT). Thin targets are used for generating monoenergetic neutrons, while thick targets are usually employed for producing more intense neutron fields. The associated photon field produced by the target nuclei may have a strong influence on the application under study. For instance, these photons can play a fundamental role in the design of an accelerator-based neutron source for BNCT. This work focuses on the measurement of the photon field associated with neutrons that are produced by 4.0-6.8 MeV protons striking both a thin 7LiF target (for generating monoenergetic neutrons) and a thick beryllium target. In both cases, very intense photon fields are generated with energy distribution extending up to several MeV.  相似文献   

15.
Radiation protection around CERN's high-energy accelerators represents a major challenge due to the presence of complex, mixed radiation fields. Behind thick shielding neutrons dominate and their energy ranges from fractions of eV to about 1 GeV. In this work the response of various portable detectors sensitive to neutrons was studied at CERN's High-Energy Reference Field Facility (CERF). The measurements were carried out with conventional rem counters, which usually cover neutron energies up to 20 MeV, the Thermo WENDI-2, which is specified to measure neutrons up to several GeV, and a tissue-equivalent proportional counter. The experimentally determined neutron dose equivalent results were compared with Monte Carlo (MC) simulations. Based on these studies field calibration factors can be determined, which result in a more reliable estimate of H(*)(10) in an unknown, but presumably similar high-energy field around an accelerator than a calibration factor determined in a radiation field of a reference neutron source.  相似文献   

16.
Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0×108-1.0×1011 neutron cm−2. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.  相似文献   

17.
A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).  相似文献   

18.
Monitoring of ionising radiation around high-energy particle accelerators is a difficult task due to the complexity of the radiation field, which is made up of neutrons, charged hadrons, muons, photons and electrons, with energy spectra extending over a wide energy range. The dose-equivalent outside a thick shield is mainly owing to neutrons, with some contribution from photons and, to a minor extent, the other particles. Neutron dosimetry and spectrometry are thus of primary importance to correctly evaluate the exposure of personnel. This paper reviews the relevant techniques and instrumentation employed for monitoring radiation fields around high-energy proton accelerators, with particular emphasis on the recent development to increase the response of neutron measuring devices > 20 MeV. Rem-counters, pressurised ionisation chambers, superheated emulsions, tissue-equivalent proportional counters and Bonner sphere spectrometers are discussed.  相似文献   

19.
A multi-moderator spectrometer using a pair of 6Li and 7Li glass scintillators has been developed. This new type of neutron spectrometer can measure the neutron spectrum in a mixed field of neutrons, charged particles and gamma-rays. The particle identification capability was investigated in neutron–gamma-ray and neutron–proton mixed fields and the neutron response functions of the spectrometer were obtained by calculations and experiments up to 200 MeV. This spectrometer has been applied to measure neutron spectrum in a neutron–proton mixed field, produced by bombarding a Be target by 70 MeV protons from the cyclotron.  相似文献   

20.
A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with (6)Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号