首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation hardness of silicon detectors based on thin epitaxial layer on Czochralski (CZ) substrate for the LHC upgrade (Super-LHC) was studied. No type inversion was observed after irradiation by 24 GeV/c protons up to the fluence of 1016 p/cm2 due to overcompensating donor generation. After long-term annealing (corresponding to 500 days at room temperature) proton irradiated devices show a decrease of the effective doping concentration and then undergo type inversion. Measurements confirm that thin epitaxial devices on CZ substrate could be used for innermost layers of vertex detectors in future experiments at the Super-LHC.  相似文献   

2.
The transient current technique has been used to investigate signal formation in unirradiated silicon microstrip detectors, which are similar in geometry to those developed for the ATLAS experiment at LHC. Nanosecond pulsed infrared and red lasers were used to induce the signals under study. Two peculiarities in the detector performance were observed: an unexpectedly slow rise to the signal induced in a given strip when signals are injected opposite to the strip, and a long duration of the induced signal in comparison with the calculated drift time of charge carriers through the detector thickness—with a significant fraction of the charge being induced after charge carrier arrival. These major effects and details of the detector response for different positions of charge injection are discussed in the context of Ramo's theorem and compared with predictions arising from the more commonly studied phenomenon of signal formation in planar pad detectors.  相似文献   

3.
4.
Two full size strip detectors were investigated in this study: one with p+ strips (p+/n/n+) and another with n+ strips (n+/p/p+). Both detectors, are made of magnetic Czochralski silicon (MCz-Si) and irradiated to S-LHC fluencies, were tested with 225 GeV muon beam in the CERN H2 area. The Current Injected Detector (CID) sensors were operated in a cooling box capable of providing a −53 °C temperature. Results indicate a relative charge collection efficiency (CCE) at 5×1015 neq/cm2 above 30% in irradiated p+/n/n+ CID detector at 600 V bias voltage. The signal to noise ratio of this CID module was about eight and a forward current of 30 μA was needed for detector biasing. In standard reverse bias, the same detector could not provide a sufficiently large signal for particle tracking purposes. A p-type (n+/p/p+) sensor was irradiated to a fluence of 2×1015 neq/cm2 and measured under the same test beam conditions. According to the theory of CIDs developed by the CERN RD39 Collaboration, this detector module could be biased up to only 230 V due to the low irradiation fluence. The CCE at 230 V was 35% in CID operation and 20% when reverse biased.  相似文献   

5.
The concept of Double Peak (DP) electric field distribution is considered for the analysis of operational characteristics of irradiated silicon detectors. The key point of the model is trapping of equilibrium carriers to the midgap energy levels of radiation-induced defects, which leads to a non-uniform distribution of space charge concentration with positively and negatively charged regions adjacent to the p+ and n+ contacts, respectively. In our new development of the DP model we consider a non-depleted base region in between the space charge regions as a high resistivity bulk, which operates as a drift region with a non-negligible electric field. Electric field characteristics of detectors processed from n-type MCZ Si wafers using various technological procedures, and irradiated by 1 MeV neutrons and 24 GeV/c protons, have been compared. Electric field profiles have been reconstructed from DP pulse response of heavily irradiated detectors and calculated by the simulation of DP electric field distribution caused by carrier trapping. It is shown that detectors from n-type MCZ Si irradiated by 24 GeV/c protons do not show typical space charge sign inversion up to the irradiation fluence of about 2.2×1015 p/cm2 and the region with a positive charge dominates over a negatively charged region.  相似文献   

6.
Both n-strip on n-bulk and p-strip on n-bulk silicon microstrip detectors have been irradiated at the CERN PS to a fluence of 3×1014 pcm−2 and their post-irradiation performance compared using fast binary readout electronics. Results are presented for test beam measurements of the efficiency and resolution as a function of bias voltage made at the CERN SPS, and for noise measurements giving detector strip quality. The detectors come from four different manufacturers and were made as prototypes for the SemiConductor Tracker of the ATLAS experiment at the CERN LHC.  相似文献   

7.
The model explaining an enhanced collected charge in detectors irradiated to 1015-1016 neq/cm2 is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider.  相似文献   

8.
Full depletion voltage of irradiated silicon pad detectors was observed to increase with time after applied bias voltage. The increase of Vfd, obtained from CV measurements, is proportional to the fluence and is independent of the irradiation particle type, space charge sign, silicon material, and thickness. Upon switching off the bias voltage, the Vfd returns to those expected values for an unbiased sample. However, the leakage current is not affected. The same behavior is observed in the measurements of the charge collection efficiency for the minimum ionizing particles. As the time constants of the increase and decrease of Vfd are of the order of 10 h at , the effect can play an important role in the future high-energy physics experiments.  相似文献   

9.
Silicon diodes with large aspect ratio perforated microstructures backfilled with 6LiF show a dramatic increase in neutron detection efficiency beyond that of conventional thin-film coated planar devices. Described in this work are advancements in the technology with increased microstructure depths and detector stacking methods to increase thermal neutron detection efficiency. The highest efficiency devices thus far have delivered over 37% intrinsic thermal neutron detection efficiency by device-coupling stacking methods. The detectors operate as conformally diffused pn junction diodes with 1 cm2 square-area. Two individual devices were mounted back-to-back with counting electronics coupling the detectors together into a single dual-detector device. The solid-state silicon device operated at 3 V and utilized simple signal amplification and counting electronic components. The intrinsic detection efficiency for normal-incident 0.0253 eV neutrons was found by calibrating against a 3He proportional counter and a 6LiF thin-film planar semiconductor device. This work is a part of on-going research to develop solid-state semiconductor neutron detectors with high detection efficiencies and uniform angular responses.  相似文献   

10.
A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate (<0.2 Hz) devices, such as the plasma focus or Z-pinch. The detector comprises a beryllium metal sheet sandwiched between two large-area xenon-filled proportional counters. A methodology for calculating the absolute response function of the detector using a “first principles” approach is described. This calibration methodology is based on the 9Be(n,α)6He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(En) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×104 cm−2, the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.  相似文献   

11.
An evaporative cooling system developed for operation and qualification testing of silicon pixel and microstrip detectors for the inner tracking detector of the CERN ATLAS spectrometer is described. Silicon detector substrates must be continuously operated between 0 and − 7°C in the high radiation environment near the circulating beams at the CERN Large Hadron Collider (LHC). This requirement imposes unusual constraints on the cooling system and has led to the choice of perfluoro-n-propane (C3F8) refrigerant, which combines good chemical stability under ionizing radiation with high dielectric strength and nonflammability. Since the silicon detectors must also be of extremely light construction to minimize undesirable physics background, coolant tubes are of thin (200 μm) aluminum wall, while evaporative operation allows a very low circulating coolant mass-flow (1–3 g · s−1/100W to evacuate). The assembled detector arrays will undergo qualification tests at room temperature before installation in the ATLAS spectrometer. The cooling system is “dual-fuel,” and can also be operated with perfluoro-n-butane (C4F10) refrigerant, offering a reduced evaporation pressure (1.9 bar) compared to that of C3F8 (6.5 bar at 15°C). Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

12.
We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2×1015 cm–2 of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.  相似文献   

13.
A large set of silicon pad detectors produced on MCz and FZ wafer of p- and n-type was irradiated in two steps, first by fast charged hadrons followed by reactor neutrons. In this way the irradiations resemble the real irradiation fields at LHC. After irradiations controlled annealing started in steps during which the evolution of full depletion voltage, leakage current and charge collection efficiency was monitored. The damage introduced by different irradiation particles was found to be additive. The most striking consequence of that is a decrease of the full depletion voltage for n-type MCz detectors after additional neutron irradiation. This confirms that effective donors introduced by charged hadron irradiation are compensated by acceptors from neutron irradiation.  相似文献   

14.
The EAGLE array (European Array for Gamma Levels Evaluations) has been designed as a multi-configuration detector set-up for in-beam nuclear spectroscopy studies at the Heavy Ion Laboratory of the University of Warsaw. The array can accommodate a maximum of 30 Compton suppressed Ge detectors coupled to various ancillary devices, such as a 4π inner ball consisting of 60 BaF2 crystals, 30 element 4π silicon detector array, compact scattering chamber equipped with 110 PIN diodes placed at backward angles and a conversion-electron spectrometer.  相似文献   

15.
Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Φn > 1013 n/cm2) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K ≤ T ≤ 450 K and a high sensitivity that can detect a defect concentration of less than 1010/cm3 (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.  相似文献   

16.
The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 μm/150 μm/7000 μm covered by a 2 μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.  相似文献   

17.
18.
Four types of thermally grown amorphous silicon dioxide films were irradiated with kilovolt X-rays and broad-band vacuum UV light (hv = 3?14 eV) under applied electric fields in the range 107–108 V m-1. The functional forms for the growth of X-ray- and VUV-induced space charge as a function of photon fluence and applied field, together with the annealing of charge by heat treatment or photo-injection, were the same for each form of radiation.  相似文献   

19.
Physical structure of pixelated detectors provides a unique tool to evaluate the effects of different types of defects in the semiconductor material that is used to fabricate the detectors. The spectroscopic performance measured for individual pixels or groups of pixels can be used to correlate point defects or fields of inhomogeneities within the material with the charge collected from photoelectric events. A block of single crystal mercuric iodide of approximately 18×18 mm2 area and between 6 and 10 mm thick is prepared. The homogeneity of this material is then investigated with light in the transparent region for HgI2 using an optical microscope. Several types of defects can be identified in this way by the scattering of light, for example, single large inclusions or voids and areas of haziness consisting of fields of small inclusions. Standard procedures are used to fabricate from this block a pixelated detector with a 121-pixel anode structure. The performance of each pixel is measured, and differences in charge collection are correlated with the optical data. Measurement data are presented, and possible mechanisms of the interactions between the defects and the charge carriers are discussed.  相似文献   

20.
The photoinduced polarization in 75 MeV oxygen ion irradiated (fluence: 1.8 × 1011, 1.8 × 1012 and 1.8 × 1013 ions/cm2) kapton-H polyimide has been investigated by analyzing charge decay characteristics for different polarizing parameters viz. electric fields (40 to 600 kV/cm), temperature (40 to 250 °C) and illumination intensity (1200 to 2800 1x). The fields induced as well as thermal ionization of excitons under illumination are the main causes which provide photopolarization. The charge decay spectra reveal the presence of both shallow and deep trapping sites in pristine and irradiated kapton-H polyimide. The variation in the photopolarization with fluence shows the occurrence of secondary radiation induced crystallinity (SRIC). The SRIC is also responsible for the increase in initial current (I0P) with intensity of illumination in low fluence irradiated samples. A decrease in I0P with intensity of illumination in high fluence irradiated samples has been associated to the conversion of trapping sites into recombination centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号