首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
The effects of 14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044) on myosin heavy chain (MHC) isoform content of the rat soleus muscle and single muscle fibers were determined. On the basis of electrophoretic analyses, there was a de novo synthesis of type IIx MHC but no change in either type I or IIa MHC isoform proportions after either SF or HS compared with controls. The percentage of fibers containing only type I MHC decreased by 26 and 23%, and the percentage of fibers with multiple MHCs increased from 6% in controls to 32% in HS and 34% in SF rats. Type IIx MHC was always found in combination with another MHC or combination of MHCs; i.e., no fibers contained type IIx MHC exclusively. These data suggest that the expression of the normal complement of MHC isoforms in the adult rat soleus muscle is dependent, in part, on normal weight bearing and that the absence of weight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.  相似文献   

2.
We examined the novel interaction of hyperthyroidism and hindlimb suspension on the pattern of myosin heavy chain (MHC) expression (mRNA and protein) in skeletal muscles. Female Sprague-Dawley rats were assigned to four groups: 1) normal control (Con); 2) thyroid hormone treated [150 micrograms 3,5,3'-triiodothyronine (T3). kg-1. day-1] (T3); 3) hindlimb suspension (HS); or 4) T3-treated and HS (T3 + HS). Results show for the first time the novel observation that the combination T3 + HS induces a rapid and sustained, marked (80-90%) downregulation of type I MHC gene expression that is mirrored temporally by concomitant marked upregulation of type IIb MHC gene expression, as evidenced by the de novo synthesis of type IIb MHC protein in the soleus. The fast type IIx MHC isoform showed a differential response among the experimental groups, generally increasing with the separate and combined treatments in both the soleus and vastus intermedius muscles while decreasing in the plantaris muscles. The fast type IIa MHC was the least responsive to suspension of the MHCs and reflected its greatest responsiveness to T3 treatment while also undergoing differential adaptations in slow vs. fast muscle (increases vs. decreases, respectively). These results confirm previous findings that all four adult MHC genes are sensitive to T3 and suspension in a muscle-specific manner. In addition, we show that T3 + HS can interact synergistically to create novel adaptations in MHC expression that could not be observed when each factor was imposed separately.  相似文献   

3.
The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.  相似文献   

4.
5.
We correlated utrophin expression with the physiopathological course in mdx mice. Evolution of the pathology was assessed by monitoring expression of developmental MHC in mdx mice versus control. Utrophin expression is detected by dystrophin/utrophin cross-reacting antibodies and can only be evaluated in mdx mouse muscles (in absence of dystrophin). This protein was expressed at the periphery of all myotubes and myofibers during the first postnatal week. It began declining in fast muscles before the third week and disappeared from the soleus between the 3rd and the 4th week. The decrease was concomitant with a sudden degenerative/regenerative process affecting slow muscle earlier and more massively than fast muscles. The pathological process became stable in all muscle types (except the diaphragm), with greater utrophin expression in the soleus. These results in mdx mice along with observed utrophin expression in severely affected DMD patients suggest that overexpression of utrophin is not enough to explain the stability of regenerated fibers in mdx mice.  相似文献   

6.
This investigation compared how hindlimb unweighting (HU) affected the contractile function of single soleus muscle fibers from 12- and 30-mo-old Fischer 344 Brown Norway F1 Hybrid rats. After 1 wk of HU, functional properties of single permeabilized fibers were studied, and, subsequently, the fiber type was established by myosin heavy chain (MHC) analysis. After HU, the relative mass of soleus declined by 12 and 19% and the relative mass of the gastrocnemius declined by 15 and 13% in 12- and 30-mo-old animals, respectively. In 12-mo-old animals, the peak active force (5.0 +/- 0.2 x10(-4) vs. 3.8 +/- 0.2 x10(-4) N) and the peak specific tension (92 +/- 4 vs. 78 +/- 3 kN/m2) were significantly reduced in the MHC type I fibers by 24 and 15%, respectively. In 30-mo-old animals, the peak active force declined by 40% (4.7 +/- 0.2 x10(-4) vs. 2.8 +/- 0. 3 x10(-4) N) and the peak specific tension declined by 30% (79 +/- 5 vs. 55 +/- 4 kN/m2). The maximal unloaded shortening velocity of the MHC type I fibers increased in 12-mo-old animals (from 1.65 +/- 0.12 to 2.59 +/- 0.26 fiber lengths/s) and in 30-mo-old animals (from 0.90 +/- 0. 09 to 1.50 +/- 0.10 fiber lengths/s) after HU. Collectively, these data suggest that the effects of HU on single soleus skeletal muscle fiber function occur in both age groups; however, the single MHC type I fibers from the older animals show greater changes than do single MHC type I fibers from younger animals.  相似文献   

7.
METHOD: The effects of 14 d of continuous centrifugation at approximately 2G on the hindlimb extensor musculature of male rats were studied. RESULTS: The mean body mass of centrifuged rats was 17% smaller than age-matched controls. In centrifuged rats, the mean absolute masses of the soleus and medial gastrocnemius (MG) were similar to control, while the mean relative masses (expressed as milligram muscle mass/gram of body mass) were larger than control. Based on a battery of monoclonal antibodies for specific myosin heavy chains (MHC), the soleus of centrifuged rats had a lower percentage (68 vs. 74%) of fibers expressing type I MHC only and a higher percentage (15 vs. 10%) that co-expressed type I and IIa MHC's. The MHC composition of fibers from the deep portion of the MG was unaffected by centrifugation. The MHC compositions based on SDS-PAGE gel electrophoresis for each muscle were similar in the two groups. Mean fiber size of each fiber type in the soleus was unaffected by centrifugation. In the MG, the fibers, expressing only type IIb MHC were smaller in the centrifuge compared to control rats. CONCLUSION: Although 2 weeks of chronic centrifugation at 2G resulted in a cessation of body growth, there was essentially no effect on the muscle masses or fiber size in either a slow or fast extensor muscle. These data suggest that periods of centrifugation may be beneficial in maintaining extensor muscle mass in an animal that is not growing at a normal rate e.g., during chronic unloading.  相似文献   

8.
The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.  相似文献   

9.
The purpose of this study is to examine the cellular and molecular events coincident with muscle denervation, especially the regenerative changes seen following muscle denervation, the role of satellite cells in this process, and the possibility of apoptotic degeneration of myonuclei as a mechanism of myonuclei loss during muscle denervation atrophy. Myosin heavy chain (MHC) isoform expression during muscle denervation was examined using pyrophosphate acrylamide gel electrophoresis and immunohistochemistry. DNA fragmentation (apoptosis) in myonuclei of denervated fibers was investigated using agarose gel electrophoresis, the TUNEL technique and ELISA for cytoplasmic histone-associated DNA fragmentation. Immunohistochemistry for MyoD and BrdU was also performed. Following muscle denervation, embryonic MHC, which is not expressed in adult healthy muscles, was expressed in some denervated fibers as well as in small activated satellite cells; maximal expression was observed 2 to 3 weeks after denervation. Activation and proliferation of satellite cells were observed, while few typical regenerating fibers were identified. It is speculated that most activated satellite cells fused to the denervated maternal fibers in order to repair them instead of fusing to each other to form new fibers as a mechanism that compensates for the atrophic changes after denervation. Although DNA ladder formation was not observed with agarose gel electrophoresis, DNA fragmentation was detected by the TUNEL technique and ELISA, suggesting that apoptotic degeneration contributes to the loss of myonuclei associated with denervation atrophy.  相似文献   

10.
Congestive heart failure (CHF) is characterized by a limb skeletal muscle myopathy with shift from the slow aerobic, fatigue resistant fibers, to the fast, anaerobic ones, and muscle bulk loss. Apoptosis (A) has been recently demonstrated to play a role in several cardiovascular diseases. AIM OF THE STUDY: we have investigated the role of A in the skeletal muscle of the hindlimbs in an experimental model of CHF. ANIMALS AND METHODS: CHF was induced in 7 males 80-100 g Sprague-Dawley rats with 30 mg/kg monocrotaline. Five age and diet matched controls were also studied. The time course of A was also studied in additional animals at day 0, 17, 24 and 30 days. RESULTS: At day 27 the electrophoretic analysis of myosin heavy chains (MHCs) demonstrated in the CHF rats the occurrence of a myopathy, with disappearance of slow MHC1 in the Tibialis Anterior (TA), and a significant shift from the slow to the fast isoforms in the soleus and EDL. With in situ DNA nick-end labelling (TUNEL) we found in the TA of CHF animals a significantly higher number of TUNEL positive nuclei (0.43 +/- 0.24 v 0.08 +/- 0.02, P<0.02 and TUNEL positive myonuclei (0.031 +/- 0.012 v 0.0025 +/- 0.005, P<0.02). The time course of A showed a progressive rise in interstitial and myocyte A, accompanied by a drop in fibers cross-sectional area and muscle weight/body weight, that came out to be significant at 30 days. Western blot showed a lower expression of Bcl-2 at 27 days and a further drop at 30 days in the CHF rats. Double staining for TUNEL and antibody against anti-MHC2a and anti MHC2b + 2x showed that A occurs non-selectively in all the myofiber types. BetaANP and Right Ventricle Mass/Volume (RVM/V) correlated significantly with total apoptotic nuclei. CONCLUSIONS: In CHF myofibers A can lead to muscle atrophy. Endothelial cells A may produce an imbalance in myofibres nutrition with relative ischemia that triggers the preferential synthesis of fast anaerobic myosin as an adaptive mechanism or alternatively induce myofibres death.  相似文献   

11.
We examined the myosin heavy-chain (MHC), troponin T (TnT), and troponin I (TnI) isoform composition in the rat soleus muscle after 21 days of hindlimb suspension using electrophoretic and immunoblotting analysis with specific monoclonal antibodies. The suspended soleus showed a shift in the MHC isoform distribution with a marked increase (from 1.0 to 33%) in the relative amount of type IIa and IIx MHC and a corresponding decrease in type I MHC. However, type IIb MHC, which represents a major component in fast-twitch muscles, was not detected in suspended soleus muscles. TnT and TnI isoform composition was also changed with the appearance of fast-type TnI and TnT bands. However, a high-mobility TnT band, which represents a major component in fast-twitch muscles, was not expressed in suspended soleus. These isoform transitions may be related to the increased maximal velocity of shortening and higher calcium sensitivity previously reported in the rat soleus after hindlimb suspension.  相似文献   

12.
13.
Expression levels of fast-twitch (SERCA1), slow-twitch (SERCA2a) and "housekeeping" (SERCA2b) isoforms of the sarcoplasmic reticulum Ca(2+)-transport ATPase were monitored during regeneration of rat soleus muscles following necrosis induced by the toxin notexin at the tissue level by Western blot analysis and at the cellular level by immunocytochemical analysis. Due to necrosis, levels of muscle-specific SERCA1 and SERCA2a isoforms dropped to low levels on the third day after injection of the toxin. Subsequently, during regeneration both isoforms recovered but with a different time course. Expression of the fast type SERCA1 increased first. This type showed its most pronounced increase between day 3 and 10. Expression of the slow type SERCA2a was biphasic. After an increase to approximately one third of the control value on days 5-10, it showed its main increase up to the control level between day 10 and 21. Expression levels of the house-keeping SERCA2b isoform remained relatively constant throughout the 4 weeks of regeneration. Between day 10 and 28, when new innervation is established, SERCA2a expression spread gradually over almost all fibers whereas the number of SERCA1-expressing fibers decreased and only a limited number of fibers co-expressed SERCA1 and SERCA2a. At 4 weeks of regeneration, expression of the fast isoform was found only in 12% of the fibers, whereas the slow form was found in 98% of the fibers. In the contralateral untreated soleus muscles, 26% SERCA1-positive and 81% SERCA2a-positive fibers were observed. Immunocytochemical analysis showed that SERCA1 and SERCA2a were co-expressed with fast and slow myosin isoforms in fibers of normal muscles but in regenerated muscle only slow myosin and slow SERCA isoforms correlated. The results show that during regeneration levels of fast and slow SERCA proteins change in a similar way as their mRNAs do. However, in regenerated soleus, unlike in normal muscle, expression of slow SERCA is coregulated only with the slow myosin isoform. This finding is in agreement with the fact that the number of slow type fibers is increased in regenerated soleus.  相似文献   

14.
We investigated in vivo expression of myosin heavy chain (MHC) isoforms, 17 kDa myosin light chain (MLC17), and phosphorylation of the 20 kDa MLC (MLC20) as well as mechanical performance of chemically skinned fibers of normal and hypertrophied smooth muscle (SM) of human myometrium. According to their immunological reactivity, we identified three MHC isoenzymes in the human myometrium: two SM-MHC (SM1 with 204 kDa and SM2 with 200 kDa), and one non-muscle specific MHC (NM with 196 kDa). No cross-reactivity was detected with an antibody raised against a peptide corresponding to a seven amino acid insert at the 25K/50K junction of the myosin head (a-25K/50K) in both normal and hypertrophied myometrium. In contrast, SM-MHC of human myomatous tissue strongly reacted with a-25K/50K. Expression of SM1/SM2/NM (%) in normal myometrium was 31.7/34.7/33.6 and 35.1/40.9/24 in hypertrophied myometrium. The increased SM2 and decreased NM expression in the hypertrophied state was statistically significant (P < 0.05). MHC isoform distribution in myomatous tissue was similar to normal myometrium (36.3/35.3/29.4). In vivo expression of MLC17a increased from 25.5% in normal to 44.2% in hypertrophied (P < 0.001) myometrium. Phosphorylation levels of MLC20 upon maximal Ca(2+)-calmodulin activation of skinned myometrial fibers were the same in normal and hypertrophied myometrial fibers. Maximal force of isometric contraction of skinned fibers (pCa 4.5, slack-length) was 2.85 mN/mm2 and 5.6 mN/mm2 in the normal and hypertrophied state, respectively (P < 0.001). Apparent maximal shortening velocity (Vmax(appt), extrapolated from the force-velocity relation) of myometrium rose from 0.13 muscle length s-1 (ML/s) in normal to 0.24 ML/s in hypertrophied fibers (P < 0.001).  相似文献   

15.
Myosin heavy chain (MHC) and fiber size properties of the adult rat soleus were determined after 4-60 days of complete inactivity, i.e., lumbar spinal cord isolation. Soleus atrophy was rapid and progressive, i.e., 25% and 64% decrease in weight and 33% and 75% decrease in fiber size after 4 and 60 days of inactivity, respectively. Changes in MHC occurred at a slower rate than the atrophic response. After 15 days there was de novo expression of type IIx MHC (approximately 10%). By 60 days, type IIx MHC accounted for 33% of the total MHC content, and 7% of the fibers contained only type IIx MHC. The relative amount of type I MHC was reduced from 93% in control to 49% after 60 days of inactivity. Therefore, the effects of 60 days of inactivity suggest that during this time period at least 75% of fiber size and approximately 40% of type I MHC composition of the adult rat soleus can be attributed to activation-related events.  相似文献   

16.
Chronic low-frequency stimulation was used to study the effects of enhanced contractile activity on satellite cell content and myosin isoform expression in extensor digitorum longus muscles from hypothyroid rats. As verified by immunohistochemical staining for desmin, vimentin, and myosin heavy chain (MHC) isoforms and by histological analysis, stimulation induced a transformation of existing fast fibers toward slower fibers without signs of fiber deterioration or regeneration. Immunohistochemically detected increases in MHC I and MHC IIa isoforms, as well as reduced numbers of fibers expressing the faster MHC isoforms, mirrored the rearrangement of the thick-filament composition. These changes, especially the upregulation of MHC IIa, were accompanied by an induction of developmental MHC isoforms in the transforming adult fibers. Satellite cell content rose 2.6-, 3.0-, and 3.7-fold over that of corresponding controls (P < 0.05 in all cases) in 5-, 10-, and 20-day-stimulated muscles, respectively. Hypothyroidism alone had no effect on satellite cell content but resulted in a significant reduction in fiber size. The relative satellite cell contents increased (P < 0.05) from 3.8% in euthyroid control muscles to 7.9, 11.5, and 13.8% in the 5-, 10-, and 20-day-stimulated hypothyroid muscles, respectively. In 20-day-stimulated muscles, the relative satellite cell content reached an almost twofold higher level than that of normal slow-twitch soleus muscle. This increase occurred concomitantly with a rise in myonuclear density, most probably because of the fusion of satellite cells with existing fibers.  相似文献   

17.
18.
Congestive heart failure is often associated with skeletal muscle abnormalities that contribute to early fatigue and acidosis. Up to the present time, however, the mechanisms responsible for these changes are unclear. Myocardial infarctions were produced by coronary ligation in adult Sprague-Dawley rats. At 20 weeks, 10 control rats, and 15 animals with heart failure [defined by elevated LVEDP (26.1 +/- 3.1 v 2.5 +/- 0.5 mmHg) and RV hypertrophy (300 +/- 21 g v 158 +/- 9 mg)] underwent in vivo measurements of total body, and soleus total protein and myosin heavy chain (MHC) synthesis by [3H]leucine constant infusion. Soleus muscle was also analysed for protein content, and MHC isoenzyme content by SDS-PAGE. Northern blotting also was used to determine levels of the mRNA's encoding type I, IIa, IIb, and IIx MHC, alpha-skeletal actin, COX III, SDH and GAPDH. Soleus muscles in heart failure rats were smaller than controls (112 +/- 6 v 126 +/- 5 mg) and the degree of atrophy was significant when corrected for body mass (0.38 +/- 0.02 v 0.46 +/- 0.02 mg/g. P = 0.007). Although there was no significant difference in plasma leucine flux (an index of whole-body protein synthesis), soleus muscle total and MHC synthesis was reduced in heart failure animals. Whereas the Type I MHC isoenzyme (beta MHC) was the only MHC detected in the soleus of control animals, type II MHC isoenzyme comprised 11.8 +/- 3.1% of the MHC in the heart failure group. Furthermore, steady-state mRNA levels encoding beta MHC were significantly depressed in the heart failure rats, where those encoding Types IIb and IIx MHC were increased. Steady-state mRNA levels of alpha-skeletal actin, cytochrome C oxidase (COX III) and succinate dehydrogenase (SDH) were also significantly depressed. This animal model of chronic heart failure is associated with quantitative and qualitative alterations in skeletal muscle gene expression that are similar to those reported in skeletal muscle of patients with chronic heart failure. The altered phenotype and impaired metabolic capacity may contribute to exercise intolerance in CHF.  相似文献   

19.
The influence of microgravity on the myosin phenotype of skeletal muscle fibers in the vastus lateralis of eight crew members was studied before and after 5-day (n = 3) and 11-day (n = 5) spaceflights (space shuttle flights: STS-32, -33 and -34). Single-fiber electrophoresis analyses showed that the proportion of fibers expressing only slow (type I) myosin heavy chain (MHC) in the vastus lateralis was significantly lower after than before 11 days of spaceflight. Although the family of type II MHC isoforms was elevated post- compared with preflight, the distribution among the isoforms of type II MHC was not statistically different. Based on monoclonal and polyclonal antibodies specific for three adult MHC isoforms and single-fiber electrophoresis, approximately 3% of the fibers analyzed coexpressed all three adult MHC isoforms. The results from immunohistochemical staining with two different sets of antibodies indicate a reduction in the percentage of fibers expressing type I MHC as a result of spaceflight. The mean difference, however, was significant only when the fibers were categorized simply as type I or II. These changes appeared to be highly individualized among the astronauts. These results suggest that a rapid change in MHC isoform expression can occur in some muscle fibers after a relatively brief exposure to spaceflight.  相似文献   

20.
High-frequency fatigue (HFF), the decline of force during continuous tetanic stimulation (lasting 4-40 s), was studied in isolated bundles of rat skeletal muscle fibers. HFF was slower in slow-twitch soleus fibers than in fast-twitch red or white sternomastoid fibers; denervation accelerated fatigue in soleus. Maximal 200-mmol/L potassium contractures of normal amplitude were induced in fatigued fibers, suggesting that crossbridge cycling and the voltage activation of excitation-contraction coupling could still occur maximally, but that activation by action potentials was impaired. An increase in [Na+]o slowed HFF, while a small increase in [K+]o or reduction in [Cl(-)]o accelerated HFF. Increasing the tetanic stimulation frequency exacerbated fatigue. Recovery from HFF proceeded rapidly since force increased markedly within a few seconds when stimulation ceased. These results support the hypothesis that a redistribution of Na+, K+, and Cl- across the transverse tubular membranes during repeated action potential activity induces fatigue by reducing the amplitude and conduction of action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号