首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

2.
Improvement of the thermal performance of a solar air heater can be obtained by enhancing the rate of heat transfer. The thermal efficiency of double pass solar air heater is higher in comparison to single pass with the concept involved of doubling the heat transfer area without increase in the system cost. Numbers of studies have been carried out on the performance analysis of double pass solar air heater provided with heat transfer augmentation techniques viz. using extended surfaces, packed bed, corrugated absorber were reported in the literature and found more increase in the thermal efficiency in comparison to conventional double duct solar air heater. These studies includes the design of double pass solar air heater, heat transfer enhancement, flow phenomenon and pressure drop in duct. This paper presents an extensive study of the research carried out on double pass solar air heater. Based on the literature review, it is concluded that most of the studies carried out on double pass solar air heater integrated with porous media and extended surfaces. Few studies were carried out with corrugated absorber. Further no study has been reported so far on double pass solar air heater with absorber plate artificially roughened from both the sides. Mathematical models based on energy analysis of some configurations of solar air heater have been discussed.  相似文献   

3.
A review on roughness geometry used in solar air heaters   总被引:2,自引:0,他引:2  
Varun  R.P. Saini  S.K. Singal   《Solar Energy》2007,81(11):1340-1350
The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. In this paper an attempt has been made to review on element geometries used as artificial roughness in solar air heaters in order to improve the heat transfer capability of solar air heater ducts. The correlations developed for heat transfer and friction factor in roughened ducts of solar air heaters by various investigators have been reviewed and presented.  相似文献   

4.
V.S. Hans  R.P. Saini 《Solar Energy》2010,84(6):898-911
The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack (α) range of 30-75° and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed.  相似文献   

5.
Artificial roughness in form of ribs is convenient method for enhancement of heat transfer coefficient in solar air heater. This paper presents experimental investigation of heat transfer and friction factor characteristics of rectangular duct roughened with W-shaped ribs on its underside on one broad wall arranged at an inclination with respect to flow direction. Range of parameters for this study has been decided on basis of practical considerations of system and operating conditions. Duct has width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) 0.018-0.03375 and angle of attack of flow (α) 30-75°. Air flow rate corresponds to Reynolds number between 2300-14,000. Heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition to determine thermo-hydraulic performance. Correlations have been developed for heat transfer coefficient and friction factor for roughened duct.  相似文献   

6.
Heat transfer in a solar water heater could be enhanced by means of twisted tapes, inserted inside the fluid flow tubes, which induce swirl flow and act as turbulence promoters. Experimental investigations for a solar water heater with twisted tape inserts having twist pitch to tube diameter ratio ranging from 3–12 have been carried out for varying mass flow rates. The results on heat transfer and friction data have been found to compare well with available results. Within the range of investigated parameters, the heat transfer in the twisted tape insert collectors has been found to increase by 18–70%, whereas the pressure drop increased by 87–132%, as compared to plane collectors. An expression correlating the Nusselt numbers in twisted tape and plane collectors, the twist pitch ratio has been developed in the form of Nus/Nu=1.3+2.88/y, which predicts the heat transfer within the range of the present investigation. Results conclude that such collectors would be preferable for higher grade energy collection as it is also at higher rate.Solar water heaters having twisted tape inserts inside the flow tubes perform better than the plane ones. It has been observed that heat losses are reduced (due to the lower value of the plate temperature) consequently increasing the thermal performance by about 30% over the plane solar water heaters under the same operating conditions. The effect of twisted-tape geometry, flow Reynolds number and intensity of solar radiation on the thermal performance of the solar water heater has been presented. It has been found that the twisted-tape collectors perform remarkably better in the lower range of flow Reynolds number (Re≈12,000), beyond which the increase in thermal performance is monotonous. It has also been found that such collectors might perform even better at higher values of intensity of solar radiation.  相似文献   

7.
An experimental investigation has been carried out to study the heat transfer coefficient and friction factor by using artificial roughness in the form of specially prepared inverted U-shaped turbulators on the absorber surface of an air heater duct. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters.The experiments encompassed the Reynolds number range from 3800 to 18000; ratio of turbulator height to duct hydraulic mean diameter is varied from, e/Dh = 0.0186 to 0.03986 (Dh = 37.63 mm and e = 0.7 to 1.5 mm) and turbulator pitch to height ratio is varied from, p/e = 6.67 to 57.14 (p = 10 to 40 mm). The angle of attack of flow on turbulators, α = 90° kept constant during the whole experimentation. The heat transfer and friction factor data obtained is compared with the data obtained from smooth duct under similar geometrical and flow conditions. As compared to the smooth duct, the turbulator roughened duct enhances the heat transfer and friction factor by 2.82 and 3.72 times, respectively. The correlations have been developed for area averaged Nusselt number and friction factor for turbulator roughened duct.  相似文献   

8.
Artificial roughness in the form of repeated transverse chamfered rib-groove roughness on one broad wall has been proposed as a convenient method for enhancement of thermal performance of solar air heater. An experimental investigation on heat and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated integral transverse chamfered rib-groove roughness on one broad wall has been carried out. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters. Six roughened plates have been tested placing a 60° V-groove at the centre line in between two consecutive chamfered ribs. The ribs' top have been chamfered having chamfer angles of 5°, 12°, 15°, 18°, 22° and 30°, while relative roughness pitch (P/e) and relative roughness height (e/Dh) of the ribs were kept constant having values of 10 and 0.03 respectively. The flow Reynolds number of the duct varied in the range of approximately 3000–21,000, most suitable for solar air heater. The effects of chamfer angle on Nusselt number and friction factor have been discussed and the results are compared with the square rib-grooved and smooth duct under similar flow conditions to investigate the enhancement in Nusselt number and friction factor. The conditions for the maximum enhancement of Nusselt number and friction factor have been determined. It has been found that the thermo-hydraulic performance of the solar air heater provided with such roughness is considerably enhanced.  相似文献   

9.
Brij Bhushan  Ranjit Singh 《Solar Energy》2012,86(11):3388-3396
Thermal performance of solar air heater does not take into account energy loss due to friction for propelling air through the duct. Therefore, it is necessary to evaluate thermohydraulic performance in order to investigate simultaneous effect of thermal and hydraulic characteristics on performance of solar air heater. In the present paper thermal and thermohydraulic performance of smooth as well as roughened solar air heater has been investigated with the help of a mathematical model. Absorber plate of solar air heater has been roughened with the formation of protrusions. Optimum value of each roughness geometry parameter has been obtained on the basis of thermal and effective efficiency of roughened solar air heater. Design plots have also been prepared in order to facilitate the designer for designing such type of roughened solar air heater within the investigated range of system and operating parameters.  相似文献   

10.
This paper presents results of a study of the performance of solar air heaters with 60 ° v-down discrete rectangular cross-section repeated rib roughness on the air flow side of the absorber plate. A detailed investigation has been carried out using a mathematical model to study the effects of various ambient, operating and design parameters on the thermal efficiency and effective efficiency (based on the net gain after taking account of the pumping power) of such air heaters. The study shows that, at air mass flow rates less than about 0.04 kg s−1 per m2 of the absorber plate, roughened duct solar air heaters provide significant performance advantage over the smooth duct air heater. The thermal and effective efficiencies differ only marginally at low flow rates. With the increase in the flow rate, the difference between the thermal and effective efficiencies increases because of the increase in the pumping power. At the mass flow rate of about 0.045 kg s−1 m−2, the effective efficiencies of the roughened and smooth duct solar air heaters are practically the same. The results of the study are presented in the form of design plots.  相似文献   

11.
In order to enhance rate of heat transfer to flowing air in the duct of a solar air heater, artificially roughened surface of absorber plate is considered to be an effective technique. Investigators reported various roughness geometries in literature for studying heat transfer and friction characteristics of an artificially roughened duct of solar air heaters. In the present paper an attempt has been made to categorize and review the reported roughness geometries used for creating artificial roughness. Heat transfer coefficient and friction factor correlations developed by various investigators for roughened ducts of solar air heaters have also been reported in the present paper.  相似文献   

12.
Artificial roughness has been found to enhance the heat transfer from the absorber plate to the air in a solar air heater duct. However, this improvement is invariably accompanied by increased pumping power. In this work, the effect of roughness and operating parameters on the thermal as well as the hydraulic performance of roughened solar air heaters is discussed and the thermohydraulic performance of roughened solar air heaters is compared with that of conventional smooth solar air heaters. The optimum design and operating conditions have been determined. On the basis of thermohydraulic considerations it has been found that the systems operating in a specified range of Reynolds number show better thermohydraulic performance depending upon the insolation. A relationship between the system and operating parameters that combine to yield optimum performance has been developed.  相似文献   

13.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Artificial roughness in the form of repeated ribs has been proposed as a convenient method for enhancement of thermal performance of solar air heaters. This paper presents the experimental investigation of heat transfer and friction factor characteristics of a rectangular duct roughened with repeated square cross-section split-rib with a gap, on one broad wall arranged at an inclination with respect to the flow direction. The duct has a width to height ratio (W/H) of 5.84, relative roughness pitch (P/e) of 10, relative roughness height (e/Dh) of 0.0377, and angle of attack (α) of 60°. The gap width (g/e) and gap position (d/W) were varied in the range of 0.5–2 and 0.1667–0.667, respectively. The heat transfer and friction characteristics of this roughened duct have been compared with those of the smooth duct under similar flow condition. The effect of gap position and gap width has been investigated for the range of flow Reynolds numbers from 3000 to 18,000. The maximum enhancement in Nusselt number and friction factor is observed to be 2.59 and 2.87 times of that of the smooth duct, respectively. The thermo-hydraulic performance parameter is found to be the maximum for the relative gap width of 1.0 and the relative gap position of 0.25.  相似文献   

15.
Varun  R.P. Saini  S.K. Singal   《Renewable Energy》2008,33(6):1398-1405
An experimental investigation has been carried out to study the heat transfer and friction characteristics by using a combination of inclined as well as transverse ribs on the absorber plate of a solar air heater. The experimental investigation encompassed the Reynolds number (Re) ranges from 2000 to 14 000, relative roughness pitch (p/e) 3–8 and relative roughness height (e/Dh) 0.030. The effect of these parameters on the heat transfer coefficient and friction factor has been discussed in the present paper and correlations for Nusselt number and friction factor has been developed within the reasonable limits. A procedure to compute the thermal efficiency based on heat transfer processes in the system is also given and the effect of these parameters on thermal efficiency has been discussed.  相似文献   

16.
The performance of a cylindrical solar water heater   总被引:2,自引:0,他引:2  
Hussain Al-Madani   《Renewable Energy》2006,31(11):1751-1763
A cylindrical solar water heater is designed and manufactured in the Department of Mechanical Engineering, University of Bahrain. It consists of a cylindrical tube made from high quality glass having a length of 0.8, 0.14 m outer diameter and a thickness of 6 mm. A copper coil tube in the shape of spiral rings, with the tube inner diameter of 2 mm and outer diameter of 3.175 mm, painted black, serves as a collector to the incident solar energy on the cylinder wall. The thermal performance was evaluated extensively throughout the months of March and April 2002; a maximum temperature difference of 27.8 °C between inlet and outlet of the solar water heater at a mass flow rate of 9 kg/h was achieved. The efficiency of the cylindrical solar water heater was calculated. The maximum value during the experimental period was found to be 41.8%. This reveals a good capability of the system to convert solar energy to heat which can be used for heating water. An economic analysis has reveals that the cylindrical solar water heater compared with the flat plate collector is cost effective.  相似文献   

17.
A computational analysis of heat transfer augmentation and flow characteristics due to artificial roughness in the form of ribs on a broad, heated wall of a rectangular duct for turbulent flow (Reynolds number range 3000–20,000, which is relevant in solar air heater) has been carried out. Shear stress transport kω turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in the literature. A detailed analysis of heat transfer variation within inter rib region is done by using the selected turbulence model. The analysis shows that peak in local heat transfer coefficient occurs at the point of reattachment of the separated flow as observed experimentally. The results predict a significant enhancement of heat transfer in comparison to that for a smooth surface. There is a good matching between the predictions by SST kω and experimental results. In this work, nine different shapes of rib are examined using SST kω model and compared on the basis of heat transfer enhancement, friction characteristics and performance index considering heat transfer enhancement with the same pumping power.  相似文献   

18.
《Energy》2001,26(2):161-176
This paper presents results of an experimental investigation of the performance of solar air heaters with chamfered repeated rib-roughness on the airflow side of the absorber plates. The roughened elements have a relative roughness pitch of 4.58 and 7.09 while the rib chamfer angle is fixed at 15°. For the airflow duct depths of 21.8, 21.5 and 16 mm, the relative roughness heights for the three roughened plates used are 0.0197, 0.0256 and 0.0441, respectively. The airflow rate per unit area of absorber plate has been varied between 0.024 to 0.102 kgs−1 m−2 (flow Reynolds number ranges from 3750 to 16 350). The study shows substantial enhancement in thermal efficiency (10 to 40%) over solar air heaters with smooth absorber plates due to the enhancement in the Nusselt number (50% to 120%). The thermal efficiency enhancement is also accompanied by a considerable enhancement in the pumping power requirement due to the increase in the friction factor (80% to 290%). At low flow rates, corresponding to applications requiring air at a high temperature, the solar air heater with roughness elements having a high relative roughness height, yields a better performance. However, at high flow rates the increase in the pumping power is greater than the relative gain in the energy collection for a greater relative roughness height and, hence, the net gain is higher for smaller roughness heights. At still higher flow rates, the smooth duct air heater has better effective efficiency. A mathematical model for thermal performance prediction of solar air heaters with absorber plate having integral chamfered rib-roughness has been presented. The experimental and predicted values of thermal efficiency lie within ±7% with a standard deviation of ±5.8%.  相似文献   

19.
A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.  相似文献   

20.
S. O. Enibe   《Renewable Energy》2003,28(14):2269-2299
The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber. The PCM is prepared in modules, with the modules equispaced across the absorber plate. The underside of the absorber plate, together with the vertical sides of the PCM module container, serve as air heating vanes. Air flow through the system is by natural convection. Energy balance equations are developed for each major component of the heater and linked with heat and mass balance equations for the heated air flowing through the system. The airflow rate is determined by balancing the buoyancy head resulting from thermally induced density differences and the friction head due to various flow resistances. The predicted performance of the system is compared with experimental data under daytime no-load conditions over the ambient temperature range of 19–41 °C and daily global irradiation of 4.9–19.9 MJ m–2. Predicted temperatures at specific locations on the absorber plate, heat exchanger plate, glazing, and heated air agree closely with experimental data to within 10, 6, 8, and 10 °C, respectively. Maximum predicted cumulative useful and overall efficiencies of the system are within the ranges 2.5–13 and 7.5–18%, respectively. Correlations of the predicted efficiencies are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号