首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of processes for recycling carbon–fibre composite waste rises a question yet to be answered: how good can the performance of recycled composites be? This paper analyses fibres reclaimed in commercial facilities, and compares the performance of subsequently manufactured recycled woven composites to that of the virgin precursor (with the same fibre architecture). Different pyrolysis cycles resulted into different compromises between complete resin removal and full fibre strength retention. At the composite level, this paper shows how strength varies with the reclamation cycle, re-impregnation process and loading direction, while stiffness remains virtually unaffected. It is shown that composite tensile strength is favoured by gentle pyrolysis cycles generating little fibre damage, while compressive strength is fully retained after more aggressive cycles which completely remove the matrix. This work proves that the mechanical response of recycled composites can rival that of virgin precursors, while highlighting the benefits of application-driven optimisation of reclamation processes.  相似文献   

2.
《Composites Part A》2007,38(3):710-718
The mechanical recycling of short fibre reinforced thermoplastics by granulation and subsequent injection moulding allows for recovery of both post consumer waste and in-plant recycled material in many industrial sectors. Parts made of these materials are often subjected to cyclic loads and therefore need to be designed against fatigue. The fatigue behaviour of reprocessed glass fibre reinforced polyamide 6,6 has been studied, using standard injection moulded specimens containing different percentages of recycled material. The effect of reprocessing of clean materials is mainly represented by fibre shortening in the injection moulding process and consequent degradation of the load bearing capacity of material. The relationship between the fatigue strength and the fibre length distribution has been discussed.  相似文献   

3.
This paper presents the results of recent experiments on the recyclability of the textile components in textile reinforced concrete (TRC). TRC as a multi-component system often contains organic ingredients such as carbon fibres and polymer impregnations. Consequently, the recycling of TRC is not trivial and has not yet been sufficiently clarified until now. In this study, an impregnated, bi-axially reinforced, and warp-knitted textiles made of carbon fibres was used in combination with a fine grained concrete. Flexural tests on TRC specimens containing recycled epoxy-impregnated carbon reinforcement were performed, whereby the recycling was simulated by a pre-treatment of the carbon fibre material in a jaw crusher. The results showed a pronounced decrease in flexural strength compared to untreated carbon reinforcement. Moreover, three different crushing methods were investigated with respect to their influence on the recovery of styrene-butadiene-rubber impregnated carbon textiles. Besides jaw crushing and impact milling, crushing with a hammer mill showed the best degree of purity but also caused the highest mechanical damage to the textile. The impact of material, structure of the composite and crushing methods on the separation behaviour could be deduced from the experiments.  相似文献   

4.
Results are presented from the ReCoVeR project on the regeneration of the strength of thermally conditioned glass fibres. Thermal recycling of end-of-life glass fibre reinforced composites or composite manufacturing waste delivers fibres with virtually no residual strength or value. Composites produced from such fibres also have extremely poor mechanical performance. Data is presented showing that a short hot sodium hydroxide solution treatment of such recycled fibres can more than triple their strength and restore their ability to act as an effective reinforcement in second life composite materials. The implications of these results for real materials reuse of recycled glass fibres as replacement for pristine reinforcement fibres are discussed.  相似文献   

5.
Polypropylene (PP) composites reinforced with recycled carbon fibre have been prepared through extrusion compounding and injection moulding. The reinforcing potential of the recycled fibre was increased by improving the interfacial adhesion between the fibre and PP matrix and this was done by the addition of maleic anhydride grafted polypropylene (MAPP) coupling agents. Three MAPP couplers with different molecular weights and maleic anhydride contents were considered. The effects on the mechanical properties of the composite were studied, and scanning electron microscopy (SEM) was used to study the fracture morphology of the tensile specimens. It was observed that with the addition of MAPP the interfacial adhesion was improved as fewer fibres were pulled-out and less debonding was seen. A microbond test was performed and a significant improvement in interfacial shear strength was measured. This resulted in composites with higher tensile and flexural strengths. The maximum strength was achieved from MAPP with the highest molecular weight. Increased modulus was also achieved with certain grades of MAPP. It was also found that the composite impact strength was improved significantly by MAPP, due to a higher compatibility between the fibre and matrix, which reduced crack initiation and propagation.  相似文献   

6.
Recycling carbon fibres from waste composite materials would only be efficient if it were possible to separate the fibres and the matrix and to re-use the recycled fibres as new reinforcements. The challenge is to use non-continuous fibres to produce high-strength materials. The formation of defects in “semi-long” fibre composites has not yet been taken into account. In this paper the influence of fibre length and fibre alignment on the strength and the modulus of composite materials is illustrated. It is shown that the presence of defects may be modelled in order to understand what the quality of a second generation composite material would be.  相似文献   

7.
Blends have been made containing various combinations of (polystyrene) virgin polymer, recycled polymer and photo-degraded polymer to investigate whether recycled polymer prepared from photo-degraded waste has increased sensitivity to photo-degradation after recycling. Bars injection moulded from virgin material were used to generate photo-degraded material using laboratory ultraviolet (UV) exposure. Recycled polystyrene was prepared from (i) sprues and runners from the mouldings made with virgin material and (ii) single polymer waste that contained other grades and some material that had already been recycled at least once. Mixtures of virgin polymer and photo-degraded polymer showed accelerated degradation when compared with similar blends of virgin polymer with recyclate from mouldings that had not been exposed to UV. This effect was greatest for short exposure times (<6 weeks) but the seeding effect of the photo-degraded material was less severe at longer exposure times.  相似文献   

8.
We propose a model dealing with the prediction of the failure stress of a unidirectional composite 0°; it is based on a probabilistic micro-macro approach. Experimental tests have been carried out on specimens (unidirectional composite 0° T300/914) with different gauge lengths in order to estimate the scale effect in the failure probability distribution.The distribution of defects along the fibres was estimated through the multifragmentation and the single fibre test. The image analysis technique was used to estimate the local volume fraction of the fibres in the bulk of the material. The above physical information is introduced in the model based on a finite element analysis. The scale effect and the influence of the involved parameters on the failure of the material were studied at two different scales and a good agreement was found between the numerical predictions and the experimental results.  相似文献   

9.
This paper compares the mechanical properties of virgin and recycled woven carbon fibre prepreg and goes on to assess the potential for recycled carbon fibre reinforced plastic (rCFRP) to be used in high performance energy absorption structures. Three sets of material were examined: fresh containing virgin fibres and resin, aged which was an out of life but otherwise identical roll and recycled which contained recycled fibre and new resin. The compressive strength and modulus of rCFRP were approximately 94% of the values for fresh material. This correlated directly with the results from impact testing where rCFRP conical impact structures were found to have a specific energy absorption of 32.7 kJ/kg versus 34.8 kJ/kg for fresh material. The tensile and flexural strength of rCFRP were 65% of the value for fresh material. Tensile and flexural moduli of rCFRP were within 90% of fresh material and ILSS of rCFRP was 75% that of fresh.  相似文献   

10.
Abstract

A simple approach to modelling the consolidation of matrix coated fibre composites is presented. It employs an existing porous material constitutive model for monolithic materials. It is argued that in the consolidation of metal coated SiC fibres, the deformation primarily occurs in an outer layer of the fibre coating, and the internal core remains undeformed, largely because of the generally hydrostatic compressive loading, and because of the incompressible nature of the material in creep. The consolidation process is therefore not vastly different to that occurs for monolithic metal fibres, and similar equations can therefore be used for the composite consolidation. The constitutive equations have been implemented into general purpose non-linear finite element software within a large deformation formulation by means of two different user subroutines, one providing a general implementation, and the other a cpu time efficient approach. The manufacture and testing of SiC continuous fibre, Ti-6Al-4V metal matrix composite specimens is described and the results of the tests compared with the model calculations, showing that good agreement can be achieved with a simple model. The dependence of volume fraction of fibres and temperature can be introduced empirically through the specification of just two material constants. The model is therefore useful in the development of consolidation processes.  相似文献   

11.
《Composites Science and Technology》2007,67(11-12):2454-2466
The tensile strength of short natural fibre reinforced thermoplastics (NFRT) was modeled using a modified rule of mixtures (ROM) strength equation. A clustering parameter, requiring the maximum composite fibre volume fraction, forms the basis of the modification. The clustering parameter highlights that as fibre loading increases, the available fibre stress transfer area is decreased. Consequently, at high volume fractions this decrease in stress transfer area increases the brittleness of the short fibre composite and decreases the tensile strength of the material. A key parameter, the interfacial shear strength, was determined by fitting the micromechanical strength model to tensile strength data at low fibre loading (10 wt%) where there is minimal fibre clustering.To test the modified ROM strength model, compression molded specimens of high-density polyethylene (HDPE) reinforced with hemp fibres, hardwood fibres, rice hulls, and E-glass fibres were created with fibre mass fractions of 10–60 wt%. The modified ROM strength model was found to adequately predict the tensile strength of the various composite specimens.  相似文献   

12.
The fatigue behaviour of a clutch pedal made of reprocessed short glass fibre reinforced polyamide 6,6 was experimentally investigated and results were compared with tests on the same part made of virgin material. The study concentrated on the differences between the fatigue behaviour of injection moulded parts and standard specimens made of the same reprocessed reinforced polyamide. The different types of loading than in standard specimens resulted into a different fatigue mechanism. Moreover the presence of sharp notches transformed the diffused damage observed in plain specimens into the formation of cracks at few critical locations. This investigation also allowed to evidence that in real parts the role of fibre shortening due to reprocessing is more pronounced because of the more complex shape of the mould cavity, causing a higher degree of fibre breakage during injection moulding, due to the longer and more tortuous path followed by the melt polymer filling the mould cavity. The use of reground material also caused the appearance of defects in pedals, i.e. voids, which diminished the fatigue strength. Nevertheless, the use of a 100% reprocessed material still ensured a high degree of safety and allowed for obtaining parts fully complying with safety specifications.  相似文献   

13.
Nonwovens are polymer-based engineered textiles with a random microstructure and hence require a numerical model to predict their mechanical performance. This paper focuses on finite element (FE) modelling the elastic–plastic mechanical response of polymer-based core/sheath type thermally bonded bicomponent fibre nonwoven materials. The nonwoven fabric is treated as an assembly of two regions having distinct mechanical properties: fibre matrix and bond points. The fibre matrix is composed of randomly oriented core/sheath type fibres acting as load-transfer link between bond points. Random orientation of individual fibres is introduced into the model in terms of the orientation distribution function (ODF) in order to determine the material’s anisotropy. The ODF is obtained by analysing the data acquired with scanning electron microscopy (SEM) and X-ray micro computed tomography (CT). On the other hand, bond points are treated as a deformable bicomponent composite material composed of the sheath material as matrix and the core material as fibres having random orientations. An algorithm is developed to calculate the anisotropic material properties of these regions based on properties of fibres and manufacturing parameters such as the planar density, core/sheath ratio and fibre diameter. Having distinct anisotropic mechanical properties for two regions, the fabric is modelled with shell elements with thicknesses identical to those of the bond points and fibre matrix. Finally, nonwoven specimens are subjected to tensile tests along different loading directions with respect to the machine direction of the fabric. The force–displacement curves obtained in these tests are compared with the results of FE simulations.  相似文献   

14.
15.
Electrical Impedance Measurement has been used to measure the diameter of single carbon fibres to within 3% of the actual value measured by Scanning Electron Microscopy (SEM). The precision of the technique developed also allows for the accurate determination of the number of fibres present in a carbon fibre bundle, such data are important for the calculation of fibre tensile strength from the tensile force applied to carbon fibre bundles. The impedance of a single carbon fibre and carbon fibre bundles of up to 20 fibres have been measured, with results showing good agreement with theoretical values. The impedance of multiple lengths of carbon fibres ranging from 80 to 300 mm has also been studied, with the impedance being directly proportional to the fibre length, as per electrical theory. This technique will be suitable for determining the number of fibres in a virgin or recycled carbon fibre bundle.  相似文献   

16.
Owing to the non-strain hardening plastic behaviour of the aluminium matrix and the weak fibre/matrix interface, it has been shown that the strength of a carbon fibre-reinforced aluminium matrix composite made by diffusion bonding of prepreg layers can be derived from the corresponding fibre bundle strength. Application of Coleman's model to predict bundle strength leads to the conclusion that the composite must break when 15% of the fibres are broken. This greatly overestimates the experimental composite strength. Overestimations made by using the Coleman model are due to some implicit assumptions which are not valid in the case under consideration and which may consequently not describe our material. A new approach is proposed for the calculation of the strength distribution of a fibre bundle, based on the same fracture mechanism (fibres fracture progressively until the catastrophic fracture) but without restrictive assumptions. The real interpolated experimental fibre strength distribution (and not the Weibull distribution) is taken into account to predict bundle strength. The proposed method clearly shows the limit of strength prediction, in term of bundle size (number of fibres and gauge length). The risk of making predictions following the Weibull distribution out of the range of the observations (through single-fibre tensile tests) is demonstrated.  相似文献   

17.
Three different PAN based carbon fibres (Toray T600S, T700S and Tenax STS5631) were recycled from epoxy resin/carbon fibre composites using supercritical n-propanol. The recycled carbon fibres were characterised using single fibre tensile tests, SEM, XPS and micro-droplet test. The tensile strength and modulus of the recycled carbon fibre was very similar to the corresponding as-received carbon fibres. However, the surface oxygen concentration decreased significantly, which caused a reduction of the interfacial shear strength with epoxy resin.  相似文献   

18.
The effect of recycling on microstructure and mechanical properties has been evaluated for injection-moulded poly-ether-ether-ketone (PEEK) composites reinforced with 10% and 30% short carbon fibres. Microstructure characterization was carried out by determining fibre length distributions, PEEK molecular weight, and by SEM observations of fracture surfaces before and after processing. These studies reveal degradation of fibres and matrix during recycling. Tensile Youngs modulus and strength, as well as impact strength reductions are presented for recycled composites.  相似文献   

19.
Recycled plastic fibre-reinforced hot-mix asphalt (HMA) mixtures have better fatigue resistance than plain HMA. The toughening effects of recycled plastic fibre-reinforced HMA were characterised using direct tensile loading tests. Adding a small quantity of recycled plastic fibres to HMA was found to significantly increase the mixture's fracture energy and toughness, which were calculated using the pre- and post-peak stages of tensile force–displacement curves. A theoretical model representing the pre-peak behaviour of fibre-reinforced HMA with direct tension-softening curves for various fibre contents is presented here. The enhanced toughness through post-peak analysis was also observed using toughness indices associated with fibre-bridging effect after the pre-peak composite stress. The pre-peak fracture energy model and post-peak toughness indices appeared to be governed by the direct tensile toughening of fibre-reinforced HMA's enhanced fibre-bridging effects. The pre-peak fracture energy model demonstrates the effect of fibre content on the strain energy density during the pull-out process within the pre-peak composite stress region. The maximum pre-peak fracture energy of a coarse-graded HMA mixed with recycled plastic fibres is achieved at a fibre content of 0.4% of the total weight of the HMA. The increases in the toughness indices within the post-peak composite stress region indicate that the fatigue resistance of fibre-reinforced HMA is at least 30% greater than that of control HMA.  相似文献   

20.
Two models have been developed which predict the crack initiation energy, notched impact strength and unnotched impact strength of fibre composites. One is applicable to composites containing short fibres and the other to composites containing long fibres. Data obtained with randomly oriented short fibre composites were consistent with the one model. The other model has been verified using composites containing uniaxially oriented long fibres and long fibres oriented randomly in a plane. The success of the model demonstrates that the high notched impact strength with long fibres is due to the redistribution of stress away from the stress concentrating notch, the extra stress that can be held by the fibre relative to the matrix and the work required to pull fibres out of the matrix during crack propagation. The parameters which have been shown to control the fracture energy are composite modulus, fibre length, fibre volume fraction, effective fibre diameter, fibre tensile strength and the coefficient of friction during fibre pull-out from the matrix. The matrix toughness on the other hand usually has no effect at all for composites containing fibres randomly oriented in two dimensions and only a minor effect in exceptional cases. The shear strength of the fibre-matrix bond has only an indirect effect in that it controls the number of fibres which pull out rather than fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号