首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residual stresses in a structure are generated as a result of the various fabrication and welding processes used to make the component. Being able to quantify these residual stresses is a key step in determining the continuing integrity of a structure in service. In this work, the residual stresses around a high strength, quenched and tempered steel T-butt web to curved plate weld have been measured using neutron strain scanning. The results show that the residual stresses near the weld were dominated by the welding residual stresses, while the stresses further from the weld were dominated by the bending residual stresses. The results suggest that the combination of welding-induced residual stress and significant pre-welding residual stress, as in the case of a thick bent section of plate can significantly alter the residual stress profile from that in a flat plate.  相似文献   

2.
This paper presents a sequentially coupled three-dimensional (3-D) thermal, metallurgical and mechanical finite element (FE) model to simulate welding residual stresses in high strength carbon steel butt weld considering solid-state phase transformation effects. The effects of phase transformation during welding on residual stress evolution are modeled by allowing for volumetric changes and the associated changes in yield stress due to austenitic and martensitic transformations. In the FE model, phase transformation plasticity is also taken into account. Moreover, preheat and inter-pass temperature are included in the modeling process. Based on the FE model, the effects of solid-state phase transformation on welding residual stresses are investigated. The results indicate the importance of incorporating solid-state phase transformation in the simulation of welding residual stresses in high strength carbon steel butt weld.  相似文献   

3.
This investigation is aimed to examine the monotonic and cyclic fracture behaviour of AISI 304LN stainless steel and its weldments, in order to assess their integrity under seismic loading conditions. The monotonic fracture resistance of the steel has been determined using standard J-integral technique; whereas the cyclic fracture resistance has been evaluated using periodic unloading to different extents fixed by pre-determined R-ratio. Comparison of the fracture toughness values of the steel estimated under monotonic and cyclic loading indicates that the latter could be as low as one-fifth of the former. The observed degradation in cyclic fracture resistance has been attributed to crack tip re-sharpening during cyclic loading.  相似文献   

4.
Notch stress, stress intensity factors and J-integral at a spot weld are generally expressed by structural stresses around the spot weld. The determination of these parameters are then simplified as determining the structural stresses that can be calculated by a spoke pattern in finite element analysis. Approximate stress formulas for structural stress, notch stress and equivalent stress intensity factor are given for common spot-welded specimens. With the aid of the formulas, test data in terms of the original load can be easily transformed into the data in terms of the structural stress, notch stress or equivalent stress intensity factor at the spot weld. The formulas also facilitate the transfer of test data across different specimens. A measuring method is given for lap joints. The strain gauge technique developed for the tensile-shear specimen shows that all the structural stress, notch stress, stress intensity factors and J-integral at the spot weld can be determined by two strain gauges attached only to the outer surface of one sheet. The results presented here should be helpful for the analysis and testing of spot welds and for developing measuring methods for spot welds.  相似文献   

5.
Post-weld improvement methods can significantly improve the fatigue strength of a structure. In some cases, the degree of improvement is limited by alternate failure modes. The material strength and type of loading also influence the observed fatigue crack behaviour. This study reports on crack patterns and strength for both constant and variable amplitude fatigue tests of high strength steel (HSS) welds. Some specimens were in the as-welded state, while others were post-weld treated, using methods generally categorized as residual stress modification processes. Failure modes were significantly different for CA and VA loading and VA loading showed less improvement.  相似文献   

6.
In the framework of deformation theory and assuming a power hardening material, a 2D elastoplastic crack problem is considered under loading conditions expressed in terms of a stationary temperature field. The HRR stress field is compared with the one obtained by a BEM analysis. It is shown that a three-term asymptotic expansion of stresses leads to a good approximation of the near field. The free coefficient in the asymptotic expansion has to be determined via the BEM results. The analysis is provided for a rectangular plate with a central crack under two kinds of boundary heat conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This paper describes an approach for computing domain-independent values of the J-integral in the finite element context for three-dimensional bodies containing residual stress. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in domain-dependent values of J, and this paper discusses modifications that yield domain independence. Two correction terms are defined. The first of these relates to the spatial gradients of non-mechanical strains in the crack-driving direction, and the second accounts for plastic dissipation included in the material state, but unrelated to fracture. The paper further presents results for two examples recently discussed in the literature. Application of the corrections in these two cases demonstrates the ability of the approach to obtain path-independent domain integral results in residual stress bearing bodies.  相似文献   

8.
The separability property with Spb parameter was used in this work to estimate the instantaneous crack length in pre-cracked specimens. A test matrix, pre-cracked ASTM C(T), SE(B) specimens and non-standard A(B) arc-shaped geometry was prepared. Materials were ASTM 387-Gr.22 2.25Cr-1.0Mo steel, an API Gr.N80 and HSLA welded joints. Initial and final crack lengths were measured on the crack surface and instantaneous crack length was determined by the compliance method to compare against the values of crack length estimated using the Spb parameter. The difference between the resulting values was less than 15%Δa suggested as reference in ASTM E1820-96.  相似文献   

9.
Finite element computations are performed to analyze the phenomena of edge cracking and crack bifurcation in two ceramic laminates composed by tensile thick layers and compressive thin layers. The difference between these two laminates is the thickness of the compressive thin layers. Experimental results performed by one of the authors in previous works show that edge cracks exist in only one laminate, while crack bifurcation occurs in both laminates under bending. To understand the cracking phenomena observed in experiments, the energy release rates are calculated. Numerical results show that the initiation of crack bifurcation can be explained by the near-tip J-integral, provided that micro-cracks exist near the crack tip.  相似文献   

10.
The present work proposes a method for elastic-plastic fracture mechanics analysis of the circumferential through-wall crack in weldment joining elbows and attached straight pipes, subject to in-plane bending. Heterogeneous nature of weldment is not explicitly considered and thus, the proposed method assumes cracks in homogeneous materials. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, closed-form limit loads for circumferential through-wall cracks between elbows and straight pipes under bending are given. Then applicability of the reference stress-based method to approximately estimate J and crack opening displacement (COD) is evaluated. It was found that the limit moments for circumferential cracks between elbows and attached straight pipes can be much lower than those for cracks in straight pipes, particularly for a crack length of less than 30% of the circumference; this result is of great interest in practical cases. This result implies that, if one assumes that the crack locates in the straight pipe, limit moments could be overestimated significantly, and accordingly, reference stress-based J and COD could be significantly overestimated. For the leak-before-break analysis, accurate J and COD estimation equations based on the reference stress approach are proposed.  相似文献   

11.
Extensive stable cracking has been observed in large test pieces of 25 mm thick weldable AlMgZn alloy which is used in the construction of a portable bridge. Standard fracture specimens produced valid KIC values, with short cracks exhibiting unstable fracture. Finite element analysis of the large specimens determined a valid JR-curve that can increase the effective KC by several times the KIC value. The R-curve has an unusual ‘concave’ shape that is associated with the change from initially flat fracture to fully slant fracture. The early stages of the R-curve are affected by in-plane constraint that can be indexed by the T-stress. The R-curve can be used to explain the stability of long cracks in full-scale tests on a bridge prototype, compared with the instability of short cracks in small, standard test pieces.  相似文献   

12.
This paper presents a new dimensional decomposition method for obtaining probabilistic characteristics of crack-driving forces and reliability analysis of general cracked structures subject to random loads, material properties, and crack geometry. The method involves a novel function decomposition permitting lower-variate approximations of a crack-driving force or a performance function, Lagrange interpolations for representing lower-variate component functions, and Monte Carlo simulation. The effort required by the proposed method can be viewed as performing deterministic fracture analyses at selected input defined by sample points. Compared with commonly-used first- and second-order reliability methods, no derivatives of fracture response are required by the new method developed. Results of three numerical examples involving both linear-elastic and nonlinear fracture mechanics of cracked structures indicate that the decomposition method provides accurate and computationally efficient estimates of probability density of the J-integral and probability of fracture initiation for various cases including material gradation characteristics and magnitudes of applied stresses and loads.  相似文献   

13.
This paper provides engineering estimates of non-linear fracture mechanics parameters for pipes with part circumferential inner surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GE/EPRI approach and the reference stress approach. For the GE/EPRI approach, the plastic influence functions for fully plastic J solutions are tabulated based on extensive 3-D FE calculations using deformation plasticity, covering a wide range of pipe and crack geometries. The developed GE/EPRI-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. The proposed reference stress based estimates are validated against detailed 3-D elastic-plastic and elastic-creep FE results. For a total of 26 cases considered in this paper, agreement between the proposed reference stress based J and C * estimates and the FE results is excellent. An important aspect of the proposed estimates is that they not only are simple and accurate but also can be used to estimate J and C * at an arbitrary point along the crack front.  相似文献   

14.
This paper presents finite element solutions for elastic-plastic J for circumferentially cracked pipes under combined mechanical and thermal loads in terms of the V/Vo factor used within the failure assessment diagram approach. Systematic analyses suggest that the two major variables affecting V/Vo are the relative magnitude of the secondary stress and the primary load magnitude. It has been found that the variations with these parameters obtained from the FE results agree well with current R6 predictions for modest thermal loads and low primary loads. For larger thermal stresses, the R6 predictions are overly conservative and more accurate predictions are suggested.  相似文献   

15.
This paper quantifies the effect of geometry (planar or cylindrical) and crack location (internal or edge cracks; weld center or interface cracks) on crack driving force for welded joints, via systematic elastic-creep and elastic-plastic finite element (FE) analyses for welded joints. For engineering estimates of crack driving forces for mismatched welded joints, the equivalent material approach is employed. It is found that the equivalent material concept works very well only for a planar geometry with an internal crack, such as the middle cracked tension specimen. For a planar geometry with an edge crack, it works reasonably well, but tends to provide conservative results for under-matching and for interface cracks. For a cylindrical geometry with an edge crack, the results are similar to those for a planar geometry with an edge crack, but caution should be exercised for over-matching, as non-conservative estimates are possible due to gross-section yielding. For a cylindrical geometry with an internal crack, excessively conservative estimates for under-matching are found, and thus an improved estimation method is desired.  相似文献   

16.
高强钢合金化热镀锌研究进展   总被引:4,自引:0,他引:4  
随着汽车工业的发展,高强钢合金化热镀锌板作为一种资源节约、环境友好型的新型材料得到了广泛的应用.与普通热镀锌钢板相比,高强钢合金化热镀锌板具有优异的焊接性、涂装性及涂装后的漆膜耐砂砾冲击性.介绍了高强钢合金化热镀锌的研究现状、基板种类和生产工艺对镀层结构及性能的影响,初步探讨了合金层形成机理,并对高强钢合金化热镀锌今后的发展进行了展望.  相似文献   

17.
This paper proposes an engineering method to estimate the J-integral and the crack opening displacement (COD) for circumferential through-wall cracked pipes under combined tension and bending. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements. Further validation is performed against three-dimensional, elastic-plastic finite element results using actual tensile data of a TP316 stainless steel at the temperature of 288°C. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method.Excellent agreements of the proposed method with experimental data and the detailed FE results firstly provide sufficient confidence in the use of the proposed method to the LBB analysis of through-wall cracked pipes under combined tension and bending. More importantly, these validations suggest that the proposed method can be used to any combination of the bending-to-tension ratio, not only for proportional loading but also for non-proportional loading. Finally the proposed method is simple to use, which gives significant merits in practice, and thus is easy to be generalised to more complex situations.  相似文献   

18.
An experimental study was conducted to assess the structural performance of repair welds in an ex-service 1Cr-1Mo-0.25V steam turbine casing material. Material from two weld techniques, one involving a post-weld heat-treatment that produced undermatched welds and the other involving a temper bead welding technique that produced overmatched welds were tested. Both welding techniques were implemented in two base metal conditions giving rise to four different welds and two different base metal conditions. The tests conducted included tensile tests, creep tests, fracture toughness tests, fatigue crack growth tests, creep crack growth tests, and creep-fatigue crack growth tests on the base metal, weld metal and the weldment region.The yield strength of the weld metal in the undermatched condition was approximately 10% lower than the base metal, while the weld metal in the overmatched condition had a yield strength that was 30% higher than the base metal at 565 °C. The creep deformation rates in the undermatched welds were 60 times faster than the base metal at a stress of 207 MPa. In the overmatched welds, the creep rates at 207 MPa were about 2.8 times faster in one case and 2.8 times slower in the other.The crack path in fracture toughness specimens followed the interface between the transition layer and the weaker of the weld metal and the base metal. The J-resistance curves for the weldments at 565 °C showed significant variability among duplicate samples from the same welds. This scatter was caused by the variability in the location of the precrack with respect to the fusion line and the location of the low fracture toughness region in the weldment. This behavior was explained using a novel approach for characterizing the fracture of welds. The creep-fatigue crack growth rates at equivalent (Ct)avg values in undermatched welds was higher than the crack growth rates in the overmatched weld samples. In all cases under creep-fatigue, the crack appeared to grow in the weaker of the base metal and the weld metal. Recommendations for future work are provided to enhance the theoretical underpinnings of the nonlinear fracture mechanics frame-work to rigorously address fracture and crack growth in welds.  相似文献   

19.
Extensive finite element analyses have been conducted to obtain solutions of the A-term, which is the second parameter in three-term elastic-plastic asymptotic expansion, for test specimens. Three mode I crack plane-strain test specimens, i.e. single edge cracked plate (SECP), center cracked plate (CCP) and double edge cracked plate (DECP) were studied. The crack geometries analyzed included shallow to deep cracks. Solutions of A-term were obtained for material following the Ramberg-Osgood power law with hardening exponent of n = 3, 4, 5, 7 and 10. Remote tension loading was applied which covers from small-scale to large-scale yielding. Based on the finite element results, empirical equations to predict the A-terms under small-scale yielding (SSY) to large-scale yielding conditions were developed. In addition, by using the relationships between A and other commonly used second fracture parameters such as Q factor and A2-term, the present solutions can be used to calculate parameters A2 and Q as well. The results presented in the paper are suitable to calculate the second elastic-plastic fracture parameters for test specimens for a wide range of crack geometries, material strain hardening behaviors and loading conditions.  相似文献   

20.
This paper presents experimental validation of two reference stress based methods for circumferential cracked pipes. One is the R6 method where the reference stress is defined by the plastic limit load. The other is the enhanced reference stress method, recently proposed by the authors, where the reference stress is defined by the optimised reference load. Using 38 published pipe test data, the predicted maximum instability loads according to both methods are compared with the experimental ones for pipes with circumferential through-thickness cracks and with part circumferential surface cracks. It is found that the R6 method gives conservative estimates of the maximum loads for all cases. Ratios of the experimental maximum load to the predicted load range from 0.54 to 0.98. On the other hand, the proposed method gives overall closer maximum loads than R6, compared to the experimental data. However, for part through-thickness surface cracks, the estimated loads were slightly non-conservative for four cases, and possible reasons are fully discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号