共查询到20条相似文献,搜索用时 15 毫秒
1.
Increase of stress intensity near interface edge of elastic-creep Bi-material under a sustained load
The transition from small-scale creep to large-scale creep ahead of a crack tip or an interface edge with strong elastic stress singularity at the loading instant causes stress relaxation and the decrease of stress intensity in general. However, this study shows that the stress near the interface edge of bi-material with no or weak elastic stress singularity increases after the loading instant and brings about the stress concentration during the transition. In addition, the creep strain distribution of this bi-material after the loading instant is different from that occurred in the transition of an interface edge with strong elastic stress singularity or a crack tip (notch root). The criterion for the increase or decrease of stress intensity near the interface edge proved by the finite element method is proposed in this study. The stress intensity near the interface edge increases when the elastic stress singularity is lower than the creep stress singularity (λel < λcr) and vice versa. 相似文献
2.
Due to the singular behavior of the stress field near the interface edge of bonded dissimilar materials, fracture generally initiates near the interface edge, or just from the interface edge point. In this paper, an edge crack near the interface, which can be considered as being induced by the edge singularity and satisfying two conditions, is analyzed theoretically, based on the singular stress field near the interface edge and the superposition principle. It is found that the stress intensity factor can be expressed by the stress intensity coefficient of the edge singular stress field, the crack length, the distance between the interface and the crack, as well as the material combination. Boundary element method analysis is also carried out. It is found that the theoretical result coincides well with the numerical result when the crack length is small. Therefore, the theoretical representation obtained by this study can be used to simply evaluate the stress intensity factor of an edge singularity induced crack for this case. However, when the crack length becomes larger than a certain value, a significant difference appears, especially for the case with large edge singularity. 相似文献
3.
A three-dimensional eigenfunction expansion approach for determination of the singular stress field in the vicinity of an adhesively-bonded scarf joint interface in a plate, with its top and bottom surfaces being encased, fully or partially, between infinitely rigid blocks is presented. The plate is subjected to extension/bending (mode I) and in-plane shear/twisting (mode II) far-field loading. Both the adhesive layer and plate materials are assumed to be isotropic and elastic. The boundary conditions that are prescribed on the end-faces (free, fixed and lubricated) of the plate as well as those, prescribed at the bottom or top surface of the scarf-bonded plate on either side of the interface between the plate and adhesive layer materials (fixed-fixed, free-fixed and fixed-free), are exactly satisfied. Numerical results include the dependence of the lowest eigenvalue (or most severe stress singularity) on the wedge aperture angle of the plate material. Variation of the same with respect to the shear moduli ratio of the constituent plate and adhesive layer materials is also an important part of the present investigation. Hitherto unobserved interesting and physically meaningful conclusions in regards to the fixed edge singularity and delamination type flaw sensitivity of an adhesively bonded plate surface are also presented. Finally, hitherto unavailable results, pertaining to the through-width variations of stress intensity factors corresponding to symmetric and skew-symmetric sinusoidal loads that also satisfy the boundary conditions on the end-faces of the adhesively bonded plate, in the vicinity of the scarf joint interface, under investigation, bridge a longstanding gap in the bonded joint stress singularity/fracture mechanics literature. 相似文献
4.
The purpose of this study is to investigate the effect of an interface layer consisting of discretely arrayed nano-sized elements on stress intensified fields. A material where an interface layer consisting of Ta2O5 helical nanoelements (nanosprings) is inserted between dissimilar components is prepared and two types of crack initiation experiments, which possess radically different stress conditions, are carried out. The finite element analyses indicate that the stress fields in the components with and without the interface layer are completely different, and it is experimentally clarified that the fracture mechanics concept cannot be applied to the crack initiation at the dissimilar interface edge with the interface layer. The stress distributions at the crack initiation reveal that the crack initiation is governed by the apparent stress of the nanospring, σ′, at the edge. This signifies that the interface layer eliminates the stress singular field at the interface edge. The criterion of the crack initiation is evaluated as . 相似文献
5.
Ratnesh Khandelwal 《Engineering Fracture Mechanics》2006,73(11):1568-1580
A method using functions of a complex variable is developed for evaluation of J1 and a modified J2 integrals for bi-material interface cracks. This method, used in conjunction with the finite element method, would be useful in the prediction of stress intensity factors for cracks lying between the interface of two dissimilar materials. Since the direct evaluation of J2 poses difficulties in modeling the singular behavior in the near vicinity around the crack tip for bi-material crack problems, it is modified by evaluating it around a contour path of small radius from the crack tip within the singularity dominated zone. It is shown that the stress intensity factors for a bi-material interface crack can be accurately evaluated using these jk integrals. 相似文献
6.
Based on the existing asymptotic solutions of the displacement and singular stress fields in the vicinity of a singular point in 2D orthotropic elastic materials, the two simple eigenequations are explicitly given for the symmetric and anti-symmetric deformation modes to determine the orders of the stress singularity at the interface corner in orthotropic bi-materials, respectively. The related displacement and singular stress fields near the interface corner are also explicitly established. The relevant stress intensity factors are defined as in the case of crack problems. The theoretical results have been confirmed by numerical, finite-element-based results in a special bi-material case. The solution obtained in this paper may be applied to the interface corner in the orthotropic/orthotropic, orthotropic/isotropic, and isotropic/isotropic bi-materials, and it will be very useful to evaluate the strength of the bonded orthotropic bi-materials with interface corners. 相似文献
7.
Zhixue Wu 《Engineering Fracture Mechanics》2006,73(7):953-962
The stress singularities at three-dimensional (3-D) interface corners and edges have been investigated numerically using common finite element methods. The effects of variation of edge angle and vertex angle between the two free side surfaces on the order of stress singularity at bi-material interface corners are determined. It is found that the order of stress singularity at interface corner depends not only on the combination of materials and edge angles but also on the vertex angle between the two free side surfaces. The effect of the vertex angle on the order of stress singularity at interface corner can be eliminated by smoothing the intersection of interface edges, which can be achieved simply by generating a circular-arc fillet at the intersection of the two free side surfaces. The numerical results show that, after smoothing the intersection of interface edges, the order of stress singularity along the interface edges become continuous, i.e. the order of the corner singularity can be reduced to the level of the edge singularity. 相似文献
8.
Failure of bi-material interfaces is studied with the aim to quantify the influence of the induced stress concentrations on the strength of the interfaces. The suggested approach is applied to a specimen configuration where two different materials are butt-joined to form a two-material beam. Strength predictions for different interface bias are made and verified in experiments where a polymer foam material is joined with members of either aluminium or Plexiglas.The predictions are made using a simple point-stress criterion in combination with highly accurate finite element calculations. The point-stress criterion was known from earlier work to give accurate predictions of failure at cracks and notches but had to be slightly modified to become applicable for the studied configurations. Both the strength and the cross-over from local, joint-induced failure to global failure were predicted with reasonable accuracy. 相似文献
9.
Hiroyuki Hirakata Yoshimasa Takahashi Shohei Matsumoto Takayuki Kitamura 《Engineering Fracture Mechanics》2006,73(17):2698-2709
In order to examine the mechanics of crack initiation at the free interface edge of a microcomponent on a substrate, delamination tests are carried out for two specimen shapes of Cr microdots on a SiO2 substrate. The microdots of the first specimen are shaped like the frustum of a round cone. The Cr microdots are successfully delaminated from the SiO2 substrate in a brittle manner and the critical load is measured by atomic force microscopy (AFM) with a lateral loading apparatus. Stress analysis reveals that a singular stress field exists near the interface edge and the strength for the crack initiation is governed by the intensified normal stress field. The critical stress intensity parameter is evaluated as KσC ≈ 0.24 MPa m0.39. Similar delamination tests are conducted for microdots shaped like the frustum of an oval cone. The stress distributions at the crack initiation of this specimen shape show a higher normal stress than the first specimen shape in the region near the interface edge of about x < 40 nm, while it is lower in the region of about x > 50 nm (x: distance from the edge). This suggests a limitation of conventional fracture mechanics: namely, the crack initiation in these specimens is not uniquely governed by the intensity of the singular field. It is found that the delamination crack is initiated when the averaged stress σya in the region of 90-130 nm reaches 190-270 MPa, regardless of the specimen shape. This indicates that the dominant stress region of crack initiation is roughly estimated as 90-130 nm and the criterion is given in terms of the averaged stress in the region. 相似文献
10.
The focus in this study is on the effect of residual stress on the delamination crack initiation from the interface edge between thin films, Cu/TiN, where the stress is intensified by the free edge effect. The delamination tests, where the mechanical stress is applied on the interface, show that the specimen with the thinner Cu film has an apparently higher strength at the interface edge. The residual stress in the films is then evaluated by curvature measurement of film/substrate coupon and the influence on the delamination is analyzed. The residual stress increases with the increase of film thickness and remarkably intensifies the stress near the edge. By superimposing the contributions of the applied load and the residual stress, a good agreement is obtained in the normal stress intensity near the interface edge at the delamination independent of the Cu thickness. This signifies that the combination of intensified stresses due to the applied load and the residual stress governs the crack initiation at the interface edge, and the toughness at the interface edge is evaluated by the stress intensity factor on the basis of the fracture mechanics concept. 相似文献
11.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface. 相似文献
12.
The finite element method is extended to the analysis of the behaviour of an interface crack in bi-material specimen with a central hole. First, only the notch effect is considered, the field of stress and variation of the stress concentration factor as a function of the Young’s modulus ratio are determined. Secondly, the notch interface crack behaviour is investigated, the variations of the stress intensity factor versus the Young’s modulus ratio and crack length are shown as well as the distribution of stresses in the plate and along the interface. 相似文献
13.
Several types of singular stress fields may appear at the corner where an interface between two bonded materials intersects a traction-free edge depending on the material combinations. Since the failure of the multi-layer systems often originates at the free-edge corner, the analysis of the edge interface crack is the most fundamental to simulate crack extension. In this study, the stress intensity factors for an edge interfacial crack in a bi-material bonded strip subjected to longitudinal tensile stress are evaluated for various combinations of materials using the finite element method. Then, the stress intensity factors are calculated systematically with varying the relative crack sizes from shallow to very deep cracks. Finally, the variations of stress intensity factors of a bi-material bonded strip are discussed with varying the relative crack size and material combinations. This investigation may contribute to a better understanding of the initiation and propagation of the interfacial cracks. 相似文献
14.
The mechanical model was established for the Dirac-type anti-plane transient fracture problem of the weak-discontinuous interface
between two FGMs half-planes. Integral transform was adopted to derive Cauchy singular integral equation and Erdogan’s allocation
method was used to calculate transient stress intensity factors numerically. The numerical solutions of the weak-discontinuous
case were contrasted with those of the infinitesimal-discontinuous one. Two possible effective methods to diminish the peak
values of transient stress intensity factors are discussed. One is to reduce the weak-discontinuity of the interface, i.e.,
to make the ratio of the two non-homogeneity parameters be close to 1.0 and to avoid the case that the signs of the two non-homogeneity
parameters are different. Another is to make a compromise between the weak-discontinuity and the all-continuity, i.e., to
make FGMs interface infinitesimal-discontinuous. Simple method was suggested for the realization of the infinitesimal-discontinuity
of FGMs interface. From the strong-discontinuous interface to the weak- discontinuous one, and then to the infinitesimal-discontinuous
one, this is a law and trend of the development of composite interfaces. To design and manufacture infinitesimal-discontinuous
interfaces may be a brand-new effective approach to enhance the reliability of composite structures, and the first rank infinitesimal-discontinuity
is enough to improve the mechanical performances of composites notably. 相似文献
15.
J. Purbolaksono A.A. Ali A. Khinani A.Z. Rashid 《Engineering Analysis with Boundary Elements》2009,33(11):1339-1343
This paper presents stress intensity factors (SIFs) of multiple semi-elliptical surface cracks in bi-material tubes subjected to internal pressure by boundary element method. In this case the water-tube boiler with oxide scale formed on the inner surface due to prolonged exposure at elevated temperature is considered as the bi-material tubes. Variations of modulus of elasticity and thickness for the oxide scale are used to evaluate their effects on the stress intensity factors. The increasing of thickness of the oxide scale causes decreasing values of the normalized stress intensity factor as the modulus of elasticity for the oxide scale is greater than that of the tube metal. Conversely, if the modulus of elasticity for the oxide scale is smaller, the increasing of thickness of the scale would also give increasing values of the normalized stress intensity factor. 相似文献
16.
Roman Kulchytsky-Zhyhailo Stanisław Jan Matysiak 《International Journal of Fracture》2007,143(3):277-286
The paper deals with the asymptotic analysis of stresses near interface crack tips in the periodically two-layered elastic
composites. The problem is investigated for the plane state of strain within the framework of the homogenized model with microlocal
parameters. The angular dependence of stresses at the crack tip is presented for different mechanical and geometrical properties
of the composite. 相似文献
17.
Taisuke Sueda Insu Jeon Takashi Sumigawa Takayuki Kitamura 《Engineering Fracture Mechanics》2011,78(16):2789-2799
The effect of a nanoelement interfacial layer on the stress singularity transitions of generic wedges is analyzed using the finite element method. The singularity transitions corresponding to changes in the vertical stiffness and the lateral stiffness of the nanoelement are examined. In general, high vertical stiffness and high lateral stiffness yield singularities close to those of wedges without nanoelements while low vertical stiffness and low lateral stiffness cause the elimination of the stress concentration. Under high vertical stiffness and low lateral stiffness the singularity is dependent on wedge shapes and the dependence is analyzed in terms of the constraint condition. 相似文献
18.
Delamination tests using sandwich type specimens are conducted for eight combinations of materials: thin films formed on silicon substrates which are relatively popular in micro-electronic industry, to develop a method for quantitative evaluation and comparison of crack initiation strength at the free edge. The difficulty stems from the difference of stress singularity, Kij/rλ (Kij: stress intensity, r: distance from free edge and λ: order of stress singularity), where λ is depending on the combination of materials. Thus, the critical Kij has different dimensions, MPa mλ, in each interface. Using the experimentally observed delamination load, the stress distribution along the interface is analyzed by boundary element method. Since the orders of stress singularity, λ, in the materials are less than 0.07 (weak singularity), the stress field near the interface edge is almost constant in atomic (nanometer) level. Then, the critical strength for the interface cracking is quantitatively represented by the concentrated stress near the edge. The effects of the several factors such as species of thin films, oxidized interlayers and deposition processes of thin films on the interface strength are evaluated on the basis of this critical stress as well. 相似文献
19.
Enrique Graciani Vladislav Manti? Federico París 《Engineering Fracture Mechanics》2009,76(4):533-2177
A numerical study of the fundamental problem of a pressurized penny-shaped crack at the interface of two dissimilar half spaces is carried out allowing for the possibility of frictionless contact between crack faces. A new, highly accurate axi-symmetric formulation of the boundary element method (BEM) for the solution of elastic contact problems is employed. The correctness and accuracy of available predictions of different kinds for several key characteristics of the solution of this problem are checked. First, comparison of the BEM results for the near-tip contact length shows a very good agreement with some existing predictions. Second, the global solution obtained by BEM is compared with existing asymptotic solutions, obtained with both the open and the frictionless contact models. BEM results show that at the closest neighborhood to the crack tip the global solution of the problem is governed by the first term of the asymptotic solution of the frictionless contact model (up to a distance of the order of a fraction of the near-tip contact length). After a small transition region, in an adjacent surrounding zone whose extent is almost independent of the near-tip contact length, the global solution of the problem is governed by the first term of the asymptotic solution of the open model. As a result of the comparison presented, the regions in which the classical fracture parameters, stress intensity factor (SIF) and energy release rate, can be accurately obtained from the global numerical solution of a crack of this kind have been determined. Third, BEM results and previous estimations show certain discrepancies with a recently published closed form solution of the near-tip contact length and the mode II SIF of the frictionless contact model. A new closed form expression of this mode II SIF, derived from the asymptotic solution of the open model, is proposed in this paper. 相似文献
20.
Takashi Sumigawa Hiroyuki Hirakata Shohei Matsumoto Takayuki Kitamura 《Engineering Fracture Mechanics》2008,75(10):3073-3083
The purpose of this study is to examine the stress distribution near the interface between a nanostructured thin film and a solid body. We focus on a nanostructured thin film that consists of Ta2O5 helical nanosprings fabricated on a Si substrate by dynamic oblique deposition. The mechanical properties of the thin film are obtained by vertical and lateral loading tests using a diamond tip built into an atomic force microscope. The apparent shear and Young’s moduli, G′ and E′, of the thin film are 2-3 orders of magnitude lower than those of a conventional solid Ta2O5 film. Moreover, the thin film shows strong anisotropy. A finite element analysis for two types of components with different interface edges between the thin film and an elastic solid body is conducted under uniform displacement. One has a free edge where the surface-interface angle is 90°-90°, and the other has a short interface crack. These analyses indicate the absence of not only stress singularity but also high stress concentration near the free edge and the interface crack tip. The characteristic stress distributions near the interface are due to the nanoscopically discrete structure of the thin film. 相似文献