首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable and unstable tearing in metals is currently analysed by J integral theory, or by the GR curve approach. This paper explains an alternative analysis route based on energy dissipation rate, D. It is shown that the implication of increasing toughness with crack growth in GR and JR curves is misleading. Even in small scale yielding (SSY), it is possible to have stable tearing under increasing G or J whilst at the same time D is constant (or even reducing) with crack growth. New terms: C for crack driving force, D* for geometry normalised D, Dssy for D in SSY, and crack stability index are explained. A D based fracture analysis diagram is introduced. Comparisons are made between energy dissipation rate, J integral, and GR curve instability prediction methods. It is shown that, in most instances, these different approaches are compatible; but that the use of JR curves derived in fully yielded test pieces to predict failure in SSY has the potential to lead to an unconservative instability prediction. The practical advantage of the energy dissipation rate approach is that it can be applied to all product thicknesses at any extent of crack growth. The major advantage compared to the GR approach is that toughness measurements can be made on much smaller specimens.  相似文献   

2.
Stable and unstable tearing in metals is currently analysed by J integral theory. Test and analysis methods are fully standardised and the validity of the approach has been demonstrated by reference to laboratory and type testing. A central requirement of the J method is that the JR curve remain invariant as size increases (specimen dimension to structure). A set of data from the literature which show the slope of the JR curve decreasing with increasing specimen size are presented. This represents an unsafe trend in terms of predicting structural behaviour from small specimens tests. The observed behaviour is explained successfully with energy dissipation rate theory. At the same time energy dissipation rate theory can also explain the more normally observed behaviour of size invariant JR curves. It is concluded that stable and unstable tearing in metals is best described by the energy dissipation rate approach.  相似文献   

3.
In this paper the ‘damage work’ proposed by Chaouadi et al. is used to formulate an energy crack initiation criterion to describe ductile crack initiation. The traditional assessment of structural integrity by the J-integral, a property of elastic-plastic fracture mechanics is compared. Two free-cutting and one structural steel are investigated. The measured values for the critical damage work density at initiation Wdi are compared with values for copper and RPV steel. As the fracture mechanical approach is limited to sharp cracks in the material (high-constraint stress state) the present damage mechanics approach is regarded as important as a more general concept closer to reality. While old void growth models of damage mechanics cannot formulate a simple criterion for crack initiation the applied damage work reaches a constant value at initiation Wdi which is independent of the stress state during the deformation process. We recommend Wdi as a material property of toughness for testing and engineering purposes.  相似文献   

4.
This paper describes crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) using a cohesive zone ahead of the crack front. The plasticity in the background (bulk) material follows J2 flow theory with the flow properties determined by a volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model). A phenomenological, cohesive zone model with six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) describes the constitutive response of the cohesive zone. Crack growth occurs when the complete separation of the cohesive surfaces takes place. The crack growth resistance of the FGM is characterized by a rising J-integral with crack extension (averaged over the specimen thickness) computed using a domain integral (DI) formulation. The 3-D analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. The paper describes applications of the cohesive zone model and the DI method to compute the J resistance curves for both single-edge notch bend, SE(B), and single-edge notch tension, SE(T), specimens having properties of a TiB/Ti FGM. The numerical results show that the TiB/Ti FGM exhibits significant crack growth resistance behavior when the crack grows from the ceramic-rich region into the metal-rich region. Under these conditions, the J-integral is generally higher than the cohesive energy density at the crack tip even when the background material response remains linearly elastic, which contrasts with the case for homogeneous materials wherein the J-integral equals the cohesive energy density for a quasi-statically growing crack.  相似文献   

5.
In this paper the jump-like crack growth model for monotonic loading is applied to re-examine both the onset of crack growth and process of stable crack growth. In the former case the fracture energy associated with a new surface creation is estimated and the in-plane constraint influence on this quantity is examined using the J-A2 approach. In the later case the formula to compute the J-resistance curve is re-examined and compared with the one known from the standards. In the analysis the plane strain model of a structural element made of elastic-plastic material is assumed.  相似文献   

6.
Extensive stable cracking has been observed in large test pieces of 25 mm thick weldable AlMgZn alloy which is used in the construction of a portable bridge. Standard fracture specimens produced valid KIC values, with short cracks exhibiting unstable fracture. Finite element analysis of the large specimens determined a valid JR-curve that can increase the effective KC by several times the KIC value. The R-curve has an unusual ‘concave’ shape that is associated with the change from initially flat fracture to fully slant fracture. The early stages of the R-curve are affected by in-plane constraint that can be indexed by the T-stress. The R-curve can be used to explain the stability of long cracks in full-scale tests on a bridge prototype, compared with the instability of short cracks in small, standard test pieces.  相似文献   

7.
The effect of ductile crack growth on the near tip stress field in two different specimen geometries has been investigated. For homogeneous specimens it is observed that the peak stress level increases with ductile crack growth. The effect is most pronounced up to about 1 mm of crack growth. For low and intermediate hardening there is a significant effect of specimen size on the stress level. In case of mismatch in yield stress, the simulations show that the increase in stress level in the material with the lower yield stress is of a similar magnitude as is the case for stationary cracks. In case of ductile crack growth deviation from the original crack plane occurs, the highest stresses are still found close to the interface, and not in front of the current crack tip.  相似文献   

8.
The effect of solutes on resistance to fracture of body centred cubic iron single-phase solid-solution alloys has been investigated. TheJ-integral method has been used for the measurement of ductile fracture toughness. TheJ IC values so determined quantitatively indicate the extent of degradation in fracture toughness due to the addition of hardening solute silicon. Cobalt addition results in alloy softening. The measuredJ IC values clearly demonstrate the toughening effect of cobalt addition as a solute, which result renders the case of Fe-Co solid-solution alloys interesting.  相似文献   

9.
This paper presents a method of analyzing fractal defects based on numerical calculations of J integrals. Two different constructions of fractal approximations are taken into consideration together with a comparison of the stability of the numerical simulations in both cases. The value of J integral provides information about the energy concentrated on the defect. The result was used to examine the relation between the energy and the measure of the defect. The simplest model indicates this relation to be linear. Nonetheless, the presented results suggest that not only the measure of the defect but also its orientation and configuration play a significant role in the energy distribution on the defect boundaries.  相似文献   

10.
Finite element computations are performed to analyze the phenomena of edge cracking and crack bifurcation in two ceramic laminates composed by tensile thick layers and compressive thin layers. The difference between these two laminates is the thickness of the compressive thin layers. Experimental results performed by one of the authors in previous works show that edge cracks exist in only one laminate, while crack bifurcation occurs in both laminates under bending. To understand the cracking phenomena observed in experiments, the energy release rates are calculated. Numerical results show that the initiation of crack bifurcation can be explained by the near-tip J-integral, provided that micro-cracks exist near the crack tip.  相似文献   

11.
Laboratory testing of fracture specimens to measure resistance curves (J − Δa) have focused primarily on the unloading compliance method using a single specimen. Current estimation procedures (which form the basis of ASTM E1820 standard) employ load line displacement (LLD) records to measure fracture toughness resistance data incorporating a crack growth correction for J. An alternative method which potentially simplifies the test procedure involves the use of crack mouth opening displacement (CMOD) to determine both crack growth and J. However, while the J-correction for crack growth effects adopted by ASTM standard holds true for resistance curves measured using load line displacement (LLD) data, it becomes unsuitable for J-resistance measurements based upon the specimen response defined in terms of load-crack mouth opening displacement (CMOD). Consequently, direct application of the evaluation procedure for J derived from LLD records in laboratory measurements of resistance curves using CMOD data becomes questionable. This study provides further developments of the evaluation procedure for J in cracked bodies that experience ductile crack growth based upon the eta-method and CMOD data. The introduction of a constant relationship between the plastic components of LLD (Δ p ) and CMOD (V p ) drives the development of a convenient crack growth correction for J with increased loading when using laboratory measurements of P-CMOD data. The methodology broadens the applicability of current standards adopting the unloading compliance technique in laboratory measurements of fracture toughness resistance data (J resistance curves). The developed J evaluation formulation for growing cracks based on CMOD data provides a viable and simpler test technique to measure crack growth resistance data for ductile materials.  相似文献   

12.
The main mechanisms of brittle fracture upon ductile crack growth are studied on the basis of the probabilistic model of brittle fracture and the deterministic model of ductile fracture, which were put forward by the authors earlier. The investigations are carried out on the reactor pressure-vessel steel 15Kh2NMFAA in the initial and embrittled states. The dependences of brittle-fracture probability on the stress intensity factor and the value of ductile crack growth are calculated for various temperatures. The temperature dependence of brittle fracture toughness in the initial and embrittled states is predicted with and without regard for ductile crack growth. The authors analyze the main factors that govern the above-mentioned relationships. The calculated results are compared to test data for CT-type compact specimens.  相似文献   

13.
The polyvinylidene fluoride (PVDF) under study is a semi-crystalline polymer that exhibits sensitivity of mechanical properties to both strain rate and temperature. Furthermore, this material is subjected to a significant cavitation during deformation. A comprehensive experimental database was built in order to analyze the fracture behaviour in the ductile to brittle transition domain. Tensile tests were carried out on smooth and notched specimens at temperatures ranging from −50 °C to 20 °C. The results were used to determine temperature-dependent material parameters by using the mechanics of porous media. The obtained set of parameters was validated on two kinds of pre-cracked specimens, by using the local approach of fracture mechanics. With the help of a finite element code, both global and local approaches of fracture mechanics were shown to complement one another: whereas classical formulae of J-integral fail to characterize crack initiation for this PVDF, the present methodology allowed the plot of J1C values with respect to temperature.  相似文献   

14.
The cryogenic fatigue delamination behavior of glass fiber reinforced polymer woven laminates under Mode I loading has been investigated experimentally and numerically. Fatigue delamination tests were conducted using double cantilever beam specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K). Fracture surface examination using scanning electron microscopy revealed delamination mechanisms under fatigue loading. A finite element analysis was also employed to calculate the J-integral range and damage distributions. The effects of temperature and loading condition on the fatigue delamination growth rates were discussed.  相似文献   

15.
Surface energy often significantly influences the deformation and failure behavior of materials and devices at the nanoscale. However, how it alters the local deformation around a crack tip remains unclear. In the present paper, we investigate the surface effects on the near-tip fields of a mode-I blunt crack (or notch). The theory of surface elasticity is incorporated into the finite element method. It is found that when the curvature radius of the crack root shrinks to nanometers, surface effects considerably affect the local stress distributions near the crack tip. We also calculate the J-integral, which is almost independent of surface effects except when the integral path approaches the crack tip. This demonstrates that surface effects are localized in a small zone around the crack tip, where the classical fracture mechanics solutions neglecting surface effects should be modified.  相似文献   

16.
This study describes an extensive set of 3-D analyses conducted on conventional fracture specimens, including pin-loaded and clamped SE(T) specimens, and axially cracked pipes with varying crack configurations. The primary objective is to examine 3-D effects on the correlation of fracture behavior for the analyzed crack configurations using the J-Q methodology. An average measure of constraint over the crack front, as given by an average hydrostatic parameter, denoted Qavg, is employed to replace the plane-strain measure of constraint, Q. Alternatively, a local measure of constraint evaluated at the mid-thickness region of the specimen, denoted QZ0, is also utilized. The analysis matrix considers 3-D numerical solutions for models of SE(T) fracture specimens with varying geometries (i.e., different crack depth to specimen width ratio, a/W, as well as different loading point distance, H) and test conditions (pin-loaded ends vs. clamped ends). The 3-D numerical models for the cracked pipes cover different crack depth to pipe wall thickness ratio, a/t, and a fixed crack depth to crack length ratio, a/c. The extensive 3-D numerical analyses presented here provide a representative set of solutions which provide further support for using constraint-designed SE(T) specimens in fracture assessments of pressurized pipes and cylindrical vessels.  相似文献   

17.
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension–shear specimens in the full range of mode mixities from pure mode I to pure mode II.  相似文献   

18.
Mesh-free analysis of cracks in isotropic functionally graded materials   总被引:1,自引:0,他引:1  
This paper presents a Galerkin-based meshless method for calculating stress-intensity factors (SIFs) for a stationary crack in two-dimensional functionally graded materials of arbitrary geometry. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinates and two newly developed interaction integrals for mixed-mode fracture analysis. These integrals can also be implemented in conjunction with other numerical methods, such as the finite element method (FEM). Five numerical examples including both mode-I and mixed-mode problems are presented to evaluate the accuracy of SIFs calculated by the proposed EFGM. Comparisons have been made between the SIFs predicted by EFGM and available reference solutions in the literature, generated either analytically or by FEM using various other fracture integrals or analyses. A good agreement is obtained between the results of the proposed meshless method and the reference solutions.  相似文献   

19.
Nuclear reactor pressure vessel (RPV) steels degrade due to neutron irradiation during normal operation. As a result, the ductile-brittle transition curve of the steel shifts to higher temperature which decreases operation margins in both the temperature and pressure. The loss of these margins however can be offset somewhat by appealing to arguments based on constraint of potential/postulated shallow cracks. In this paper, it is demonstrated that the fracture toughness values for shallow flaws are higher than those determined from standard deep cracked test specimens based on constraint consideration. The J-A2 three-term solution is used to characterize the crack-tip stress field where J represents the level of loading and A2 quantifies the level of constraint. Based on the RKR cleavage model, procedures to quantify the temperature shift between specimens with different constraint levels are developed. The experimental data by Sherry et al. [Sherry AH, Lidbury DPG, Beardsmore DW. Validation of constraint based structural integrity assessment methods. Final report, Report No. AEAT/RJCB/RD01329400/R003, AEA Technology, UK, 2001] for the A533B RPV steel are used to demonstrate the procedure and it is shown that the ductile-brittle transition curve shifts to lower temperature from high constraint to low constraint specimens.  相似文献   

20.
The non-singular T-stress provides a first-order estimate of geometry and loading mode, e.g. tension vs. bending, effects on elastic–plastic, crack-front fields under mode I conditions. The T-stress has a pronounced effect on measured crack growth resistance curves for ductile metals – trends most computational models confirm using a two-dimensional setting. This work examines T-stress effects on three-dimensional (3D), elastic–plastic fields surrounding a steadily advancing crack for a moderately hardening material in the framework of a 3D, small-scale yielding boundary-layer model. A flat, straight crack front advances at a constant quasi-static rate under near invariant local and global mode I loading. The boundary-layer model has thickness B that defines the only geometric length-scale. The material flow properties and (local) toughness combine to limit the in-plane plastic-zone size during steady growth to at most a few multiples of the thickness (conditions obtainable, for example, in large, thin aluminum components). The computational model requires no crack growth criterion; rather, the crack front extends steadily at constant values of the plane-stress displacements imposed on the remote boundary for the specified far-field stress intensity factor and T-stress. The specific numerical results presented demonstrate similarity scaling of the 3D near-front stresses in terms of two non-dimensional loading parameters. The analyses reveal a strong effect of T-stress on key stress and strain quantities for low loading levels and less effect for higher loading levels, where much of the plastic zone experiences plane-stress conditions. To understand the combined effects of T-stress on stresses and plastic strain levels, normalized values from a simple void-growth model, computed over the crack plane for low loading, clearly reveal the tendency for crack-front tunneling, shear-lip formation near the outside surfaces, and a minimum steady-state fracture toughness for T = 0 loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号